

Example $g=0$, for general $\lambda \geq 3$,

For every nodal Riemann surface $[(S, j, \Theta, \Delta)] \in \overline{M}_{g, l} \setminus M_{g, l}$,

$$2-l = 2-2g-l = \sum_{i=1}^k (2-2g_i - l_i - N_i)$$

\nwarrow # of marked pt in i -th component
 \searrow # of nodal pt in i -th component

$k = \# \text{ component of } S$

- Total number of nodal pt = $\sum_{i=1}^k N_i / 2$ and $k \leq 1 + \underbrace{\left(\sum_{i=1}^k N_i / 2 \right)}_{\text{if } S \text{ is connected.}}$
- $\sum_{i=1}^k l_i = l$

Then $2 = 2k - 2 \sum_{i=1}^k g_i - \sum_{i=1}^k N_i$

$$\Leftrightarrow 1 + \left(\sum_{i=1}^k N_i / 2 \right) = k - \sum_{i=1}^k g_i$$

$$\Leftrightarrow \sum_{i=1}^k g_i \leq 0 \Leftrightarrow g_i = 0 \quad \forall i = 1, \dots, k.$$

Hence, if we represent $[(S, j, \Theta, \Delta)]$ by a graph, it must be a tree.

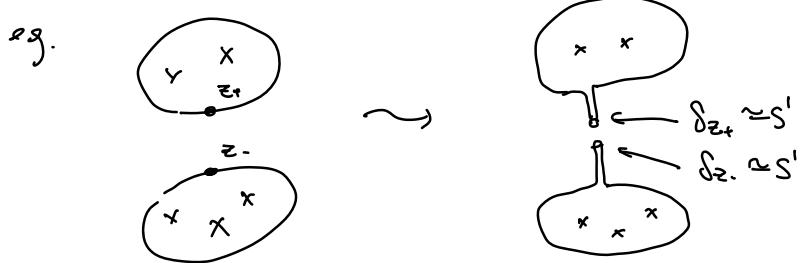
Studying general top properties of $\overline{M}_{g, l}$ is a fundamental topic in many areas including Riemann surface theory, GW, ...

To confirm that $\overline{M}_{g, l}$ is (sequentially) compact in some sense, let's introduce the following term.

For any punctured Riemann surface $\dot{\Sigma} = \Sigma \setminus \Gamma$, near each punctured pt $p \in \Gamma$.

Denote $\dot{\Sigma}$ by replacing $[0, \infty) \times S^1$ by $[0, \infty] \times S^1$, then $\dot{\Sigma}$ is homeomorphic to a Riemann surface with boundary and $\#b/d = \#\Gamma$.

Similarly, for (S, j, Θ, Δ) , denote $\dot{S} := \overline{S \setminus \Delta}$.



Then choosing a orientation preserving map $\Xi: S_{z+} \rightarrow S_{z-}$, we can glue Ξ_+, Ξ_- together and get $\hat{S}_{\Xi} := \overline{S}/\sim$.

One should view \hat{S}_{Ξ} as a smoothing of \hat{S} (with nodal singularities).
 depending on Ξ .

Rank For convenience denote the gluing circle (by $S_{z+} \xrightarrow{\Xi} S_{z-}$) by $C_{\Xi} \subset \hat{S}_{\Xi}$.

Theorem (Thm 9.26 in [Wu]) For g, h satisfying $2g + h \geq 3$. Then for any seq $[(\Sigma_k, j_k, \Theta_k)] \in M_{g, h}$, there exists a stable, ^{connected} nodal Riem

surface $[(S, j, \theta, \Delta)] \in \overline{M}_{g,l}$ s.t. after restricting to a subseq,

$$[(\Sigma_k, j_k, \theta_k)] \rightarrow [(\mathbb{F}, j, \theta, \Delta)]$$

in the sense: (S, j, θ, Δ) admits a "decoration" \mathbb{F} s.t. when $k \gg 1$
such that

\exists homeomorphism $\varphi_k: \hat{S}_{\mathbb{F}} \simeq \Sigma_{k,\mathbb{F}}$ mapping θ to θ_k preserving
the order, $\varphi_k^* j_k = j$ in $C_{loc}^\infty(\hat{S}_{\mathbb{F}} \setminus C_{\mathbb{F}})$.

In particular when $k \gg 1$, Σ_k are in fixed type Σ .
 θ_k are in the same number.

Remark $M_{g,l}$, $\overline{M}_{g,l}$ are about domains, NOT curves or maps.

One can fix a seq of a.c.s in the target (M, ω) , $J_k (\rightarrow J)$
and consider

$$u_k: (\Sigma_k, j_k, \theta_k) \rightarrow (M, \omega, J_k)$$

where are J_k -hol maps. This naturally lead to the notation
when (M, ω) is a closed sympl wfd.

$$M_{g,l}(J, A) = \left\{ \left(u: (\Sigma, j) \rightarrow (M, J) \right) \times (\Sigma^l \setminus \Delta) \right\} / \sim$$

where $A \in \text{Th}(M)$ J -hol and $[\text{im}(u)] = A$

\sim
bihol + order
preserving

Then $[u_k] \in M_{g,l}(J_k, A_k)$ $\xrightarrow[\text{compactness}]{\text{Gromov}}$ $u_\infty: (S, j, \theta, \Delta) \rightarrow (M, \omega, J)$
with uniform energy upper bound

u_∞ is J -hol + $[\text{im}(u_\infty)] = A$
↑
domain is $\hat{S}_{\mathbb{F}}$ for some \mathbb{F} .

Difference between this version of Gromov compactness with the one in previous lecture without marked pts:

\widehat{S}_Ξ itself admits nodal pts in the DM-compactification that do not come from bubbling!

These nodal pts come from coincidence of marked pts.

Remark - Recall the domain of the previous Gromov compactness is called "bubble tree" (WHY? :))

- Bubbles in this Gromov compactness sit in $\widehat{S}_\Xi \setminus C_\Xi$.

2. SFT compactness

Setting: symplectic cobordism (W, ω) and its completion \widehat{W} .

The analogue of $M_{g,1}(J, A)$ is

$$M_{g,1}(J, A, \gamma^+, \gamma^-)$$

where $\gamma^+ = \{ \gamma_1^+, \dots, \gamma_{k^+}^+ \}$ each is a closed Reeb orbit of the positive end of W , $(M_+, (\omega_+, \lambda_+))$

$$\gamma^- = \{ \gamma_1^-, \dots, \gamma_{k^-}^- \}$$

$A \in H_2(W; \gamma^+, \gamma^-)$ and J is a compatible a.c.s on (\widehat{W}, ω)

$\exists \gamma^+, \gamma^- \Rightarrow$ we need to modify the definition of nodal Riemann surface to be "punctured" nodal Riemann surface

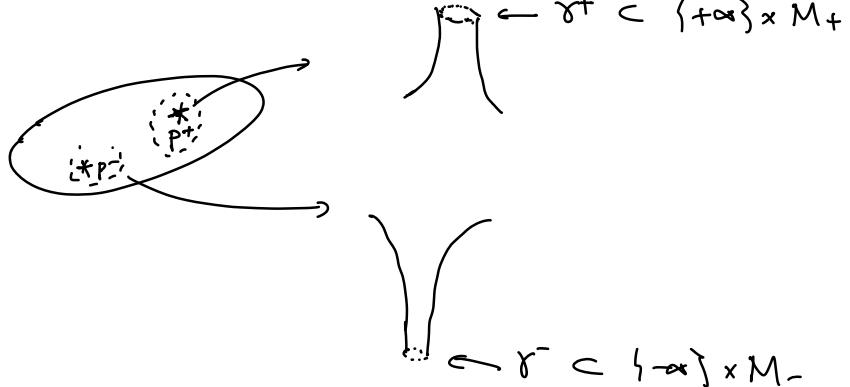
$$(S, j, \Gamma \cup \Theta, \Delta)$$

NEW!

$$\Gamma = \left\{ \underbrace{p_1^+, \dots, p_{k^+}^+}_{\substack{\text{collection is} \\ \text{denoted by } \Gamma^+}}, \underbrace{p_1^-, \dots, p_{k^-}^-}_{\substack{\text{collection is} \\ \text{denoted by } \Gamma^-}} \right\}$$

Elements in Γ are also called marked pts, and we will consider $S = S \setminus \Gamma$.
When put into curve setting.

e.g.



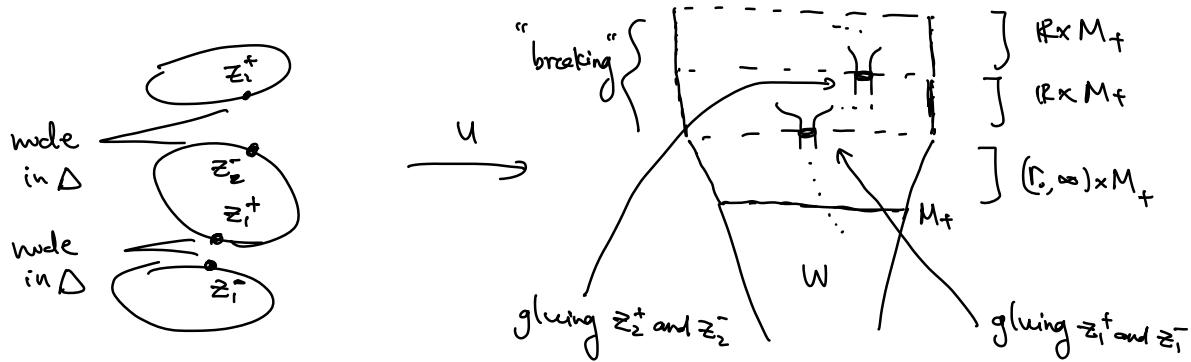
- $(S_0, j_0, \Gamma_0 \cup \Theta_0, \Delta_0) \sim (S_1, j_1, \Gamma_1 \cup \Theta_1, \Delta_1)$ same as above
- connected, stable, arithmetic genus same as above.

Let's consider curves or maps:

$$u: (S, j, \Gamma \cup \Theta, \Delta) \rightarrow (\hat{W}, \omega)$$

Here is a **NEW** phenomenon (in the image), due to non-cpt of \hat{W} .

symplectization
part of \hat{W} : $[r, \infty) \times M_+ \simeq [r_0, \infty) \times M_+ \cup \underbrace{R \times M_+ \cup \dots}_{\substack{\text{may have} \\ \text{many copies.}}}$



These nodes are not the same as the standard node as above.

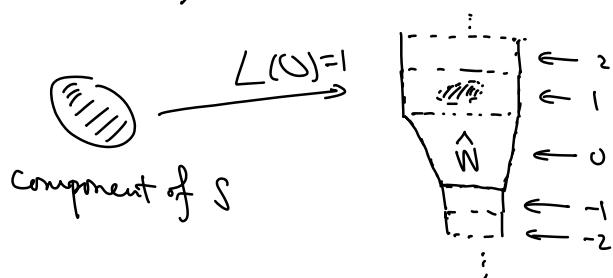
To describe this more rigorously, we will need the following definition.

Def Given $g, l, N_-, N_+ \geq 0$, a holomorphic building of height $N_- \mid l \mid N_+$ with ∞ genus g and λ marked pts is a tuple

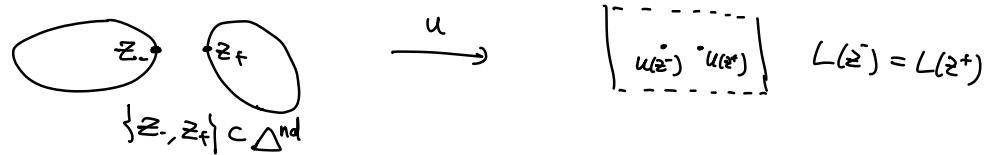
$$(S, j, \overset{\Gamma^+ \cup \Gamma^-}{\Gamma \cup \Theta}, \Delta = \overset{\text{nd}}{\Delta} \cup \overset{\text{br}}{\Delta}, L, \overset{\text{I}}{\Xi}, u)$$

↑
standard nodes ↗
breaking nodes

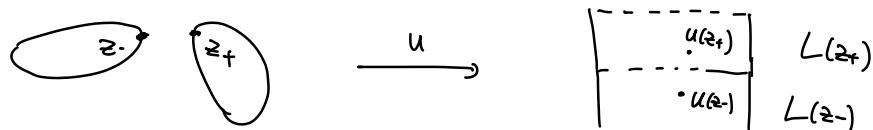
- $L: S \rightarrow \{-N_-, \dots, -1, 0, 1, \dots, N_+\}$ locally constant map (called the level structure) s.t. this labels the height level and $\overset{\text{I}}{\Xi}$ is labelled by 0.
- L attains every value in $\{-N_-, \dots, N_+\}$ except possibly 0;



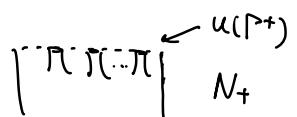
- for node $\{z^-, z^+\} \subset \Delta^{\text{nd}}$, $\angle(z) = \angle(z^+)$.



- for breaking node $\{z^-, z^+\} \subset \Delta^{\text{br}}$, $\angle(z^+) - \angle(z^-) = 1$



- $\angle(\Gamma^+) = \{N_+\}$ and $\angle(\Gamma^-) = \{-N_-\}$



- Ξ is the "decoration" is a set of choice of orientation-reversing map $\{z^+ \xrightarrow{\Xi} z^-\}$ for breaking node $\{z^+, z^-\} \subset \Delta^{\text{br}}$

- $u: (S \setminus (\Gamma \cup \Delta^{\text{br}}), j) \rightarrow \coprod_{N \in \{-N, \dots, N_+\}} (\widehat{W}_N, J_N)$

upper levels

where $(\widehat{W}_N, J_N) = \begin{cases} (R \times M_+, J_+) & \text{for } N \in \{1, \dots, N_+\} \\ (\widehat{W}, J) & \text{for } N=0 \\ (R \times M_-, J_-) & \text{for } N \in \{-N, \dots, -1\} \end{cases}$

upper levels

lower levels