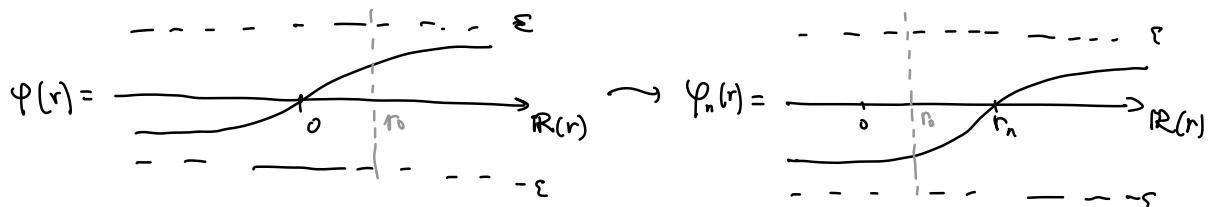
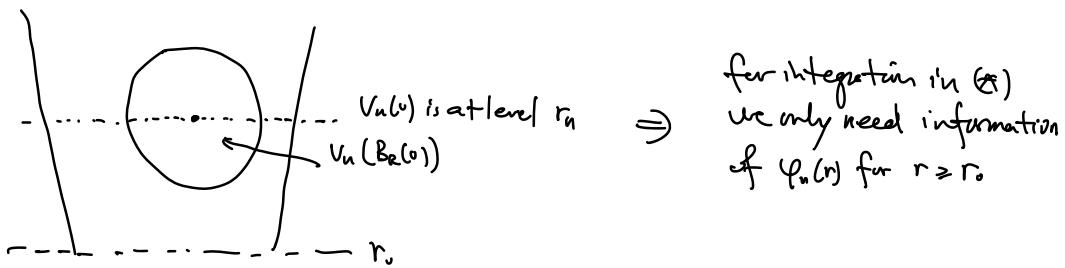
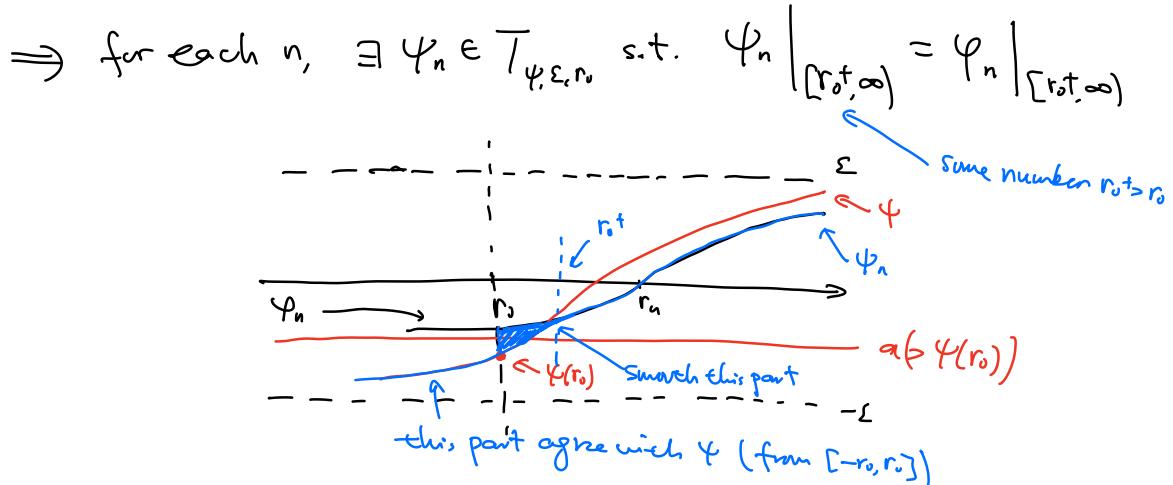


where $\Psi_n(r) = \varphi(r - r_0)$.



For this R , when $n \gg 1$, $B_{R(0)} \subset B_{R_n(0)}$, so

$$V_n(B_{R(0)}) \subset V_n(B_{R_n(0)}) \subset [r_0, \infty) \times M_+$$



Take $\Psi_n = \text{an extension of } \varphi_n|_{[r_0^+, \infty)}$ (so that it agrees with φ in $[-r_0, r_0]$)
 $\Rightarrow \Psi_n \in T_{\varphi, \varepsilon, r_0}$

Rank One can take smoothing in the "blue" region so r_0^+ can be taken arbitrarily close to r_0 .

Then

$$\begin{aligned}
 \int_{B_R(0)} v_n^*(\omega_+ + d(\varphi_n(r)\lambda_+)) &= \int_{B_R(0)} v_n^*(\omega_+ + d(\psi_n(r)\lambda_+)) \\
 &\leq \int_{B_{\varepsilon_n R}(w_n)(0)} v_n^*(\omega_+ + d(\psi_n(r)\lambda_+)) \\
 &= \int_{B_{\varepsilon_n}(w_n)} u^*(\omega_+ + d(\psi_n(r)\lambda_+)) \\
 &\leq \int_U u^*(\omega_+ + d(\psi_n(r)\lambda_+)) \\
 &\leq E_{\psi, \varepsilon, r_0}(u|_U) < +\infty.
 \end{aligned}$$

This holds for any R (the upper bound is independent of R), so we get the conclusion in claim. \square

This claim in particular implies that

$$E_\varepsilon(u|_U) = \sup_{\varphi \in T_\varepsilon} \int_U u^*(\omega_+ + d(\varphi(r)\lambda_+)) < +\infty.$$

(recall that boundedness of E_ε for $R \times M_+$ is not the target of φ : either $(-\varepsilon, \varepsilon)$ or any interval $(a, b) \subset (-\varepsilon, \varepsilon)$).

Moreover, we claim that $\int_U v_n^* \omega_+ = 0$.

Proof of claim: Take subseq of v_n to consider disjoint NBH of w_n

Then obviously $\lim_{n \rightarrow \infty} \int_{B_{\varepsilon_n}(w_n)} u^* \omega_p = 0$ for any $\varphi \in T_{\psi, \varepsilon, r_0}$.

for any
 \Rightarrow fixed $R > 0$

$$0 = \lim_{n \rightarrow \infty} \int_{B_{\varepsilon_n}(du(w_n)) \setminus \{0\}} v_n^* w_\varphi$$

$$\tilde{v}_n = \tau(-r_n) \cdot v_n$$

$$= \lim_{n \rightarrow \infty} \int_{B_{\varepsilon_n}(du(w_n)) \setminus \{0\}} \tilde{v}_n^* \cdot \tau(r_n)^* w_\varphi$$

$$\geq \lim_{n \rightarrow \infty} \int_{B_R(0)} \tilde{v}_n^* \cdot \tau(r_n)^* w_\varphi = \lim_{n \rightarrow \infty} \int_{B_R(0)} \tilde{v}_n^* (w_+ + d(\varphi_n(r), \lambda_+))$$

where $\varphi_n(r) = \varphi(r + r_n)$.

Note that $w_+ + d(\varphi_n(r), \lambda_+) = w_+ + \varphi_n(r) d\lambda_+ + \varphi'_n(r) dr \lambda_+$.

Take $\varphi \in T_{\varphi, \varepsilon, R}$ s.t. $\varphi'(r) \rightarrow 0$ as $r \rightarrow +\infty$. Then

$$\varphi'_n(r) = \varphi'(r + r_n) \rightarrow 0 \text{ as } n \rightarrow +\infty.$$

cont.
 \Rightarrow computation
above

$$0 \geq \lim_{n \rightarrow \infty} \int_{B_R(0)} \tilde{v}_n^* (w_+ + \varphi_n(r) d\lambda_+) \quad (\text{ex})$$

Since w_+ is mm-deg on the $\ker \lambda_+$, when ε is sufficiently small,

$\lim_{n \rightarrow \infty} \varphi_n(r) = \varphi(+\infty) \leq \varepsilon$, so $w_+ + \varphi_n(r) d\lambda_+$ is also mm-deg on $\ker \lambda_+$.

Hence, (ex) implies $V_{\partial\Omega}(\mathcal{G})$ is everywhere tangent to $\partial\Omega$ and $R_{(w_+, \lambda_+)}$

$$\Rightarrow \int_{\mathcal{G}} v_\varphi^* w_+ = 0 \text{ the claim's conclusion} \quad \square$$

$\sim B_R(0)$ for any R

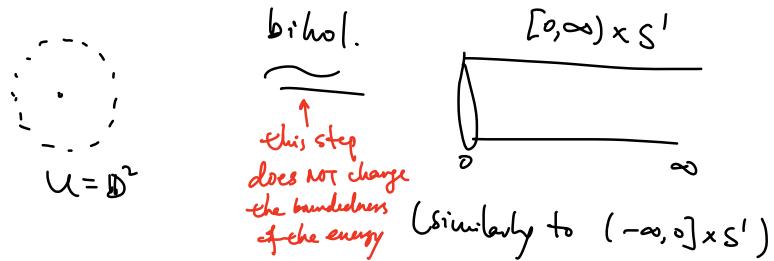
beginning of SFT-7

Then by energy control/ estimation, the claims above implies
that $V_{\partial\Omega} = \text{constant}$. $\rightarrow \square$.

Case 3 $V_{\partial\Omega}$ diverges to $+\infty$ or $-\infty$.

A symmetric argument as in Case 2. \square .

For a fixed $u: U$ (nbH of puncture $\geq \delta \Sigma$) $\rightarrow \widehat{W}$ with bounded energy,
 gets a seq of J-hol curve by "sliding technique": consider
 the identification



Then consider a seq $s_n \rightarrow +\infty$ and $u_n: [-s_n, \infty) \times S^1 \rightarrow \widehat{W}$

by $u_n(s, t) := u(s + s_n, t)$. strictly speaking this should be composed with the bihol identification.

By prop above, $|du_n|$ has a uniform upper bound, but it's not clear or not even true that $im(u_n)$ is uniformly bounded.

There are three cases:

① $u_n(0, 0) = u(s_n, 0)$ has a bounded seq.

$\xrightarrow{+ \text{prop}}$ \exists subseq $u_n \rightarrow$ a J-hol class $: \mathbb{R} \times S^1 \rightarrow \widehat{W}$.

For any $\varphi \in T_{\Psi, \Sigma, r_0}$ and any $R > 0$, we have

$$\begin{aligned} \int_{[-R, R] \times S^1} u_n^* \omega_\varphi &= \lim_{n \rightarrow \infty} \int_{[-R, R] \times S^1} u_n^* \omega_\varphi \\ &\leq \lim_{n \rightarrow \infty} \int_{[-\frac{s_n}{\Sigma}, \infty) \times S^1} u_n^* \omega_\varphi \end{aligned}$$

$$= \lim_{n \rightarrow \infty} \int_{\underbrace{[-s_n, \infty)} \times S^1} \underbrace{u_n^* \omega_\varphi}_{\rightarrow \{z\}} = 0$$

(b/c by our hypothesis near $\{z\}$ the energy $E_{\psi, \varepsilon, r_0}$ is bounded.)

Let $\int_{\mathbb{R} \times S^1} u_n^* \omega_\varphi = 0 \quad (\forall \varphi \in T_{\psi, \varepsilon, r_0})$

$\Rightarrow u_n$ is constant mapping $\mathbb{R} \times S^1$ to a pt $p \in W$.

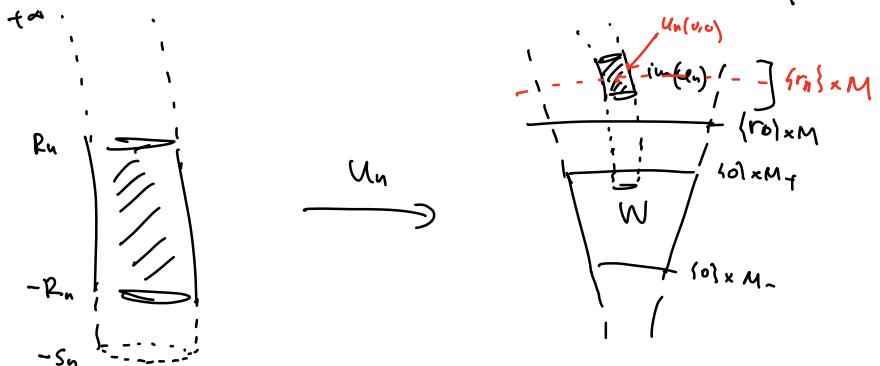
$\Leftrightarrow u_n(0, \cdot) = u(s_n, \cdot) \rightarrow p \text{ when } n \rightarrow +\infty$.

② $u_n(0, 0) = u(s_n, 0)$ has a subseq $\rightarrow \{z\} \times M_+$.

Again, assume $u_n(0, 0) \in \{r_n\} \times M_+$ when $r_n \rightarrow +\infty$.

\exists uniform upper bound of $|u_n| \Rightarrow \forall n, \exists R_n \xrightarrow{n \rightarrow +\infty} +\infty$ s.t

$$u_n([R_n, R_n] \subset [-s_n, +\infty)) \subset \underbrace{[r_0, \infty)} \times M_+ \text{ the symplectization part}$$



Now, let's slice the cylinder

$$\widetilde{u}_n := \mathcal{T}(-r_n) \cdot u_n \Big|_{[-R_n, R_n] \times S^1} : [-R_n, R_n] \times S^1 \rightarrow \mathbb{R} \times M_+$$

Then $\{\tilde{u}_n\}$ uniformly bounded and also $\{\tilde{u}_n(z)\}$ is a bounded seq.
by case ①, we know

$$\exists \tilde{u}_\infty \longrightarrow u_\infty : \mathbb{R} \times S^1 \longrightarrow \mathbb{R} \times M_+$$

which is $J_+ - \text{hol}$ (= extension of $J|_{(r, \infty) \times M_+}$).

By the same argument as in the previous prop, we get

$$E_\Sigma(u_\infty) < +\infty \quad \text{and} \quad \int_{\mathbb{R} \times S^1} u_\infty^* w_T = 0$$

\Rightarrow
by energy
control prop
(beginning of ST-7)
 u_∞ is either a constant or u_∞ is a reparametrization
of "trivial cylinder" $u_\infty : \mathbb{R} \times S^1 \rightarrow \mathbb{R} \times M_+$ by
 $(s, t) \rightarrow (T_s, \tau(T_t))$
for some closed Reeb orbit of $(M_+, (w_+, \lambda_+))$ of period T .

③ $u_n(0, 0) = u(s_n, 0)$ has a subseq $\rightarrow \{-\infty\} \times M_-$.

The same discuss and result as in case ②.

Remark For puncture pt z of Σ :

applicable when the
image of u is
contained in cpt subset.

- If u is bounded, then removal of singularities can apply, so under the bounded energy condition, z is removable
- If u is unbounded, then Lemma 9.16 in [Cale] proves that u is proper: $\forall R \geq r_0, \exists s_0 \geq 0$ s.t.

$$\begin{aligned} u((s_0, \infty) \times S^1) &\subseteq (R, \infty) \times M_+ \\ &\subseteq (-\infty, -R) \times M_- \end{aligned}$$

in other words, mapping ABH of puncture \cong to ABH of $\{ \text{torus} \times M_g \text{ on } \text{torus} \} \times M_-$.

Here is a summary, under (uniform) bounded energy control,

target domain	compact (or contained in cpt set)	non-compact (completion of a sympl cob)
$z \in \Sigma$ cpt	<p>u: regular pt</p> <p>$\{u_n\}$: bubbles when $u_n \rightarrow \infty$.</p>	<p>constant map or reduce back to the left case</p> <p>due to maximum principle.</p>
puncture point z of Σ non-cpt	<p>removable singularity</p> <p>$\{u_n\}$: each u_n reduces back to case above + bubble</p>	<p>asymptotic to closed leaf orbits.</p> <p>$\{u_n\} \rightarrow ??$</p> <p>asymptotic end bubble breaking (cf. Ham Flux cylinder)</p>

To rigorously describe this limit
(usually called a "holomorphic building")
we need to build up some basic
language and notations (See Next Lecture).