

Rmk One more thing needs to be confirmed / defined: if

$$u_n \rightarrow u^{(1)} \# u^{(2)} \# \cdots \# u^{(m)}$$

$$u_n \rightarrow \tilde{u}^{(1)} \# \tilde{u}^{(2)} \# \cdots \# \tilde{u}^{(m')}$$

then $m=m'$ and $\tilde{u}^{(i)} = \text{a shift of } u^{(i)}$.

Back to the Ham Floer homology setting, we have a similar result as the Cor near the end of previous section.

Cor. For x_- and x_+ , closed Ham orbits of the f.flat sys (M, w, H, J) for every $c > 0$, \exists only finitely many htp classes $A \in \text{Tr}(M; x_{\pm})$ that can be represented by a Floer cylinder $u: \mathbb{R} \times S^1 \rightarrow M$ with $E(u) < c$.

Pf Suppose not, \exists a seq of Floer cylinders with uniform b/d energy,

$$u_n: (\mathbb{R} \times S^1, j) \rightarrow (M, w, J) \text{ with } [\text{im}(u_n)] = A_n \text{ and}$$

A_n are all different.

by then $\Rightarrow \exists$ a subseq (still denoted by) $u_n \rightarrow u$ (broken + bubble).
when $n \gg 1$, $[\text{im}(u_n)]$ is stable. $\rightarrow \leftarrow$ \square

Rmk - Consider "capped" closed Ham orbits (x_{\pm}, w_{\pm}) where

$$w_{\pm}: \mathbb{D}^2 \rightarrow M \text{ with } w_{\pm}|_{\partial \mathbb{D}^2} = x_{\pm}.$$

Then Floer cylinders counted in Ham Floer homology theory satisfies
 $\bigcup_{u \in M((x_{\pm}, w_{\pm}), (x_{\pm}, w_{\pm}))} u$

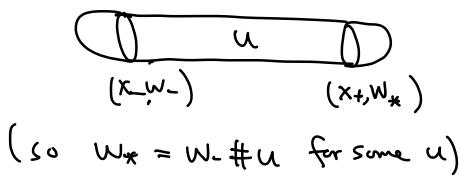
with $w_+ = w_1 \# u$

then $E(u) = A_H((x, w_-)) - A_H((x, w_+)) < c \leftarrow \text{ind of } u$

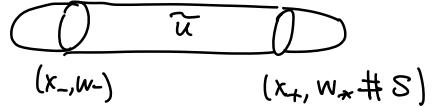
$\Rightarrow \{[u]\}_{u \in M((x, w_-), (x, w_+))}$ is a finite set in $\pi_1(M, x_2)$

Note that this is a highly non-trivial result!

- Sometimes we view this from a different perspective: given (x, w_-) and (x_+, w_*) , then consider fiber cylinder u starting from (x, w_-) and connecting x_+ .
 \uparrow
 fixed
 $(\text{capping of } x_+ \text{ is determined by } u)$



(so $w_* = w_- \# u$ for some u)



(so $w_* \# S = w_- \# \tilde{u}$ for some other u , where S is a top 2-sphere).

To facilitate the encoding of information on "S", we introduce the notation $T^{[S]}$, so

Here, we can either view S as a homotopy class and then use the second Hurewicz map to map S into $H_2(M; \mathbb{Z})$ or we can directly view S as a homology class. Both are OK.

$$(x, w_-) \longrightarrow (x_+, w_*)$$

$$(x, w_-) \longrightarrow (x_+, w_*) \cdot T^{[S]}$$

$\xrightarrow{\text{exhaust}} \xrightarrow{\text{all such } u} (x, w_-) \longrightarrow (x_+, w_*) \cdot \underbrace{(a_{S_1} T^{S_1} + a_{S_2} T^{S_2} + \dots)}_{\text{homotopy class } T^{[S]}}$

claim: it's an element in Novikov ring.
 in the sense that $[\omega](S_n) \rightarrow \underline{+\infty}$ as $n \rightarrow \infty$.

b/c for any $C \in \mathbb{R}$, if $[\omega](S) < C$, then any corresponding u satisfies

$$E(u) = A_H((x, w_-)) - A_H((x, w_* \# S))$$

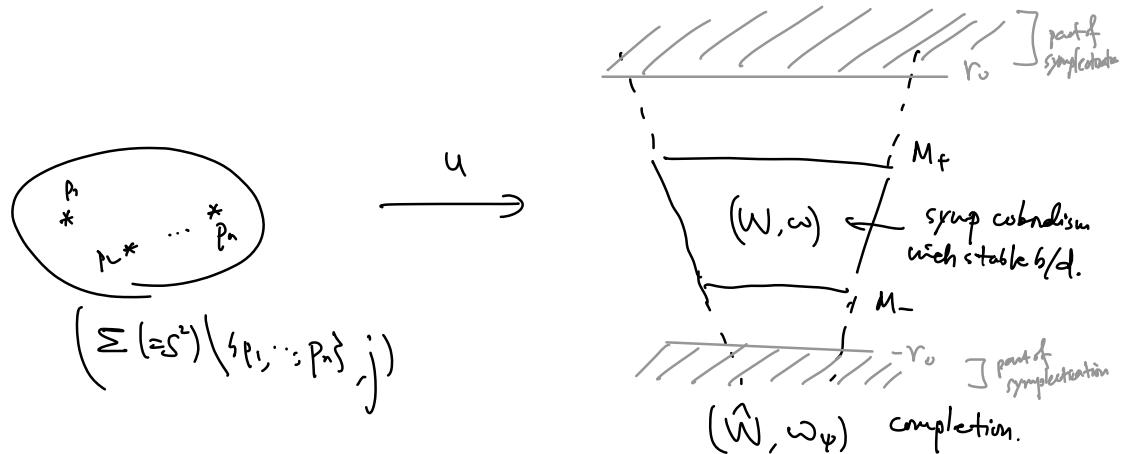
$$= A_H((x, w)) - A_H((x_+, w_+)) + \omega(s) < c$$

discussion
above \Rightarrow finitely many htp class $[\text{im}(u)]$

\Rightarrow finitely many s_i with non-zero a_i .

One can simplify $a_{s_i} T^{s_i} + \dots$ to be $a_{\lambda_1} T^{\lambda_1} + a_{\lambda_2} T^{\lambda_2} + \dots$ where $\lambda_i = [\omega](s_i)$. This is the born of Novikov ring in (Haus) Floer theory.

4. Asymptotic behavior near punctures and non-cpt target



$$\text{Energy constraint: } E_{\epsilon, \Sigma, r_0}(u) = \sup_{\varphi \in T_{\epsilon, \Sigma, r_0}} \int_{\Sigma} u^* \omega_{\varphi} < +\infty.$$

\hookrightarrow Note that it can't be $\int_{\Sigma} u^* \omega_{\varphi} = +\infty$.

Even near p_i , $E_{\epsilon, \Sigma, r_0}(u|_{U, \text{NBH of } p_i}) < +\infty$, we need extra argument to get the following conclusion (since the target is non-cpt).

Prop (Lemma 9.14
in [Wee]) $\exists c = c(U), |du| \leq c$ in U .

Pf of prop We prove it via three different cases.

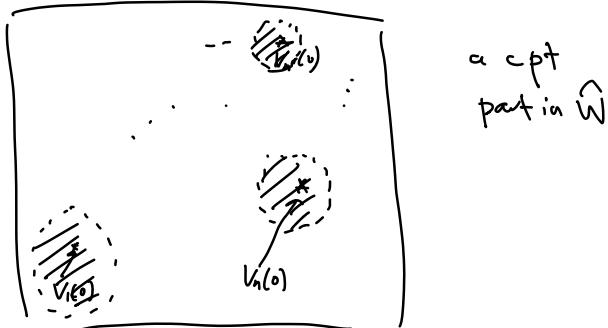
Again, by bubble off analysis: Suppose $p_i = z$ is a bubble pt ($\Leftrightarrow \lim_{n \rightarrow \infty} p_i \rightarrow z$) for a seq $z_n \rightarrow z$, then replacing z_n by $w_n (\rightarrow z)$

$$\exists \quad v_n: \quad B_{\varepsilon_n |d_{\mathcal{U}}(w_n)|}(0) \quad \longrightarrow \quad \hat{w} \quad \quad n \in \mathbb{N}$$

which are J -hol, with $|dv_n| \leq 2$ and $|dv_n(z)| = 1$

Case 1 $V_{n(0)}$ has a bounded subseq.

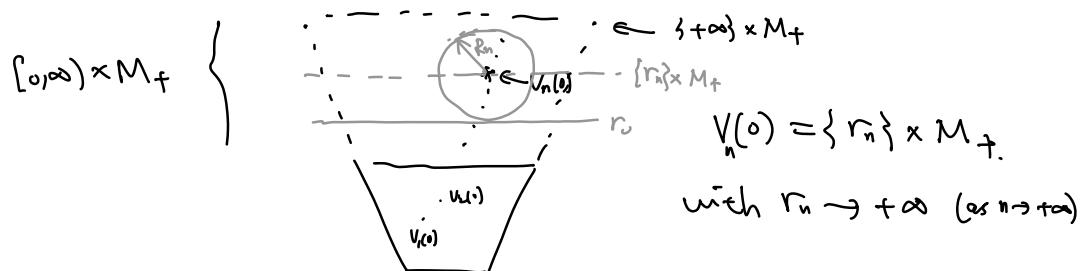
$U(W_n)$



$$\xrightarrow{\text{compactness}} V_n \xrightarrow{C^\infty} V_\infty : \mathbb{C} \rightarrow \overset{\wedge}{\mathbb{W}} \quad \left(\text{with } |\mathrm{d}V_\infty(z)| = 1 \right) \xrightarrow{\text{un-constant}}$$

Then finite energy assumption $\Rightarrow V_\alpha$ is a constant $\rightarrow \leftarrow$.

Case 2 $\{x_n^{(0)}\}$ has a subseq diverging to $\{+\infty\} \times M_+$



Denote R_n the largest radius of a disk $B_{R_n}(0)$ s.t. $\text{im}(v_n|_{B_{R_n}(0)}) \subset [r_n] \times M_4$

Observe that $R_n \rightarrow +\infty$ as $n \rightarrow \infty$ (b/c $|dV_n| \leq 2$)

Then in order to control the image of V_n inside a cpt subset,
using shifting in \mathbb{R} -direction (of symplectization) $\tau(r)$
shifting by r

$$\tilde{V}_n := \tau(-r_n) \circ V_n \Big|_{B_{R_n}(0)} : B_{R_n}(0) \rightarrow \mathbb{R} \times M_+$$

"sliding technique"

Note that $\tilde{V}_n(0)$ is a bounded sequence, so $\exists V_\infty : \mathbb{C} \rightarrow \mathbb{R} \times M_+$
is $J_{+-} \omega_0$ where J_+ is the extension of $J|_{(r_0, \infty) \times M_+}$ (by \mathbb{R} -invariance).

Now we claim that $\exists \alpha \in (-\varepsilon, \varepsilon)$ s.t. $\forall \varphi : \mathbb{R} \rightarrow (a, \varepsilon)$, $\varphi' > 0$,

$$\int_{\mathbb{C}} V_\infty^* (\omega_+ + d(\varphi(r) \lambda_+)) < +\infty.$$

(Recall that in $(\mathbb{R}, \omega_\varphi)$, in $(r_0, \infty) \times M_+$, $\omega_\varphi = \omega_+ + d(\varphi(r) \lambda_+)$.)

Proof of claim. Pick any $\alpha > \varphi(r_0)$, then for any such φ as above,

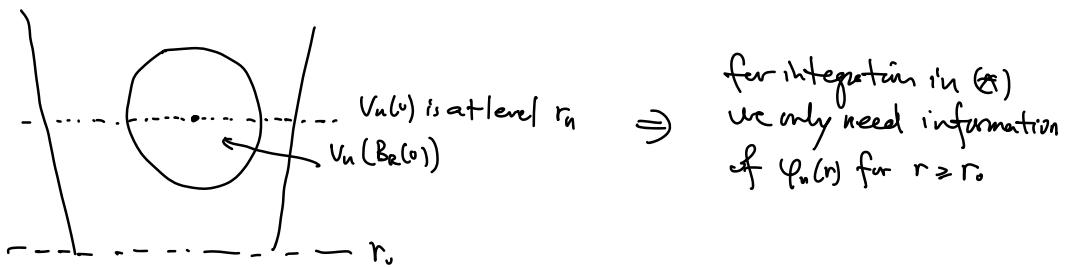
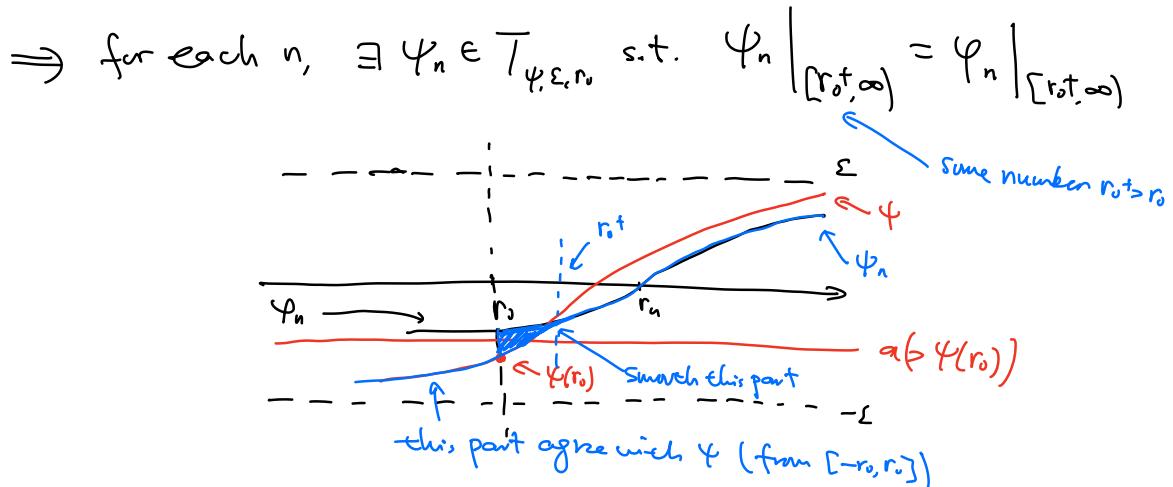
$$\begin{aligned} & \int_{B_R(0)} V_\infty^* (\omega_+ + d(\varphi(r) \lambda_+)) \\ &= \lim_{n \rightarrow \infty} \int_{B_R(0)} \tilde{V}_n^* (\omega_+ + d(\varphi(r) \lambda_+)) \\ &= \lim_{n \rightarrow \infty} \int_{B_R(0)} V_n^* (\tau(-r_n)^* (\omega_+ + d(\varphi(r) \lambda_+))) \\ &= \lim_{n \rightarrow \infty} \int_{B_R(0)} V_n^* (\omega_+ + d(\varphi_n(r) \lambda_+)) \quad (\text{?}) \end{aligned}$$

where $\Psi_n(r) = \varphi(r - r_0)$.



For this R , when $n \gg 1$, $B_{R(0)} \subset B_{R_n(0)}$, so

$$V_n(B_{R(0)}) \subset V_n(B_{R_n(0)}) \subset [r_0, \infty) \times M_+$$



Take $\Psi_n = \text{an extension of } \Psi_n|_{[r_0^+, \infty)} \text{ (so that it agrees with } \varphi \text{ in } [-r_0, r_0])$
 $\Rightarrow \Psi_n \in T_{\varphi, \varepsilon, r_0}$

Rank One can take smoothing in the "blue" region so r_0^+ can be taken arbitrarily close to r_0 .