

The uniform upper bound of $E(u_n)$ also implies that $b < +\infty$.

- Since there are only finitely many bubble pt. for each $\mathcal{Z}^{(i)}$ and its NBH (disjoint from other NBHs of $\mathcal{Z}^{(j)} \neq \mathcal{Z}^{(i)}$), carry out the renormalization trick:

$$\exists \text{ J-hol spheres } V^{(i)}: (\mathbb{S}^2, j) \rightarrow (M, \omega, J).$$

In particular, along the process of getting $V^{(i)}$, \exists further bubble pts for seq of J-hol v_n .

- Finally, the top conclusion is derived in a straightforward way. For a precise argument, see Thm 5.2.2 in (ii) in McDuff - Salamon's big book. \square

Pink A less obvious observation from the last top conclusion in Thm 13 that when $n \gg 1$ the homology class, $[u_n(\Sigma)]$ is constant (since $H^2(M; \mathbb{Z})$ is a discrete set).

Cor. Let K be a cpt metric space and $\sigma: K \xrightarrow{\sigma_{(k)}} \mathcal{T}(M, \omega)$ be a continuous map. Then for every $C > 0$, \exists only finitely many homology classes $A \in \pi_2(M)$ with

$$\langle [\omega], A \rangle \leq C$$

that can be represented by $J_{\sigma(k)}$ -hol spheres for some $k \in K$.

pf. Suppose not, \exists a seq of $K_n \in K$ and $J_{\sigma(K_n)} - \text{hw}$ curves

$u_n: (\mathbb{S}_2, j) \rightarrow (M, \omega, J_{\sigma(K_n)})$ with $[u_n(s_n)] = A_n$ and

A_n are all different in $\pi_1(M)$.

$\xrightarrow{\text{by then}}$ \exists a subseq (still denoted by) $u_n \rightarrow u$ and (when $n \gg 1$)
 $\uparrow J_{\text{hw}}$ for $J_{\sigma(K_n)} \rightarrow J$.
 $[u_n(s_n)]$ is stable. $\rightarrow \Leftarrow$. \square

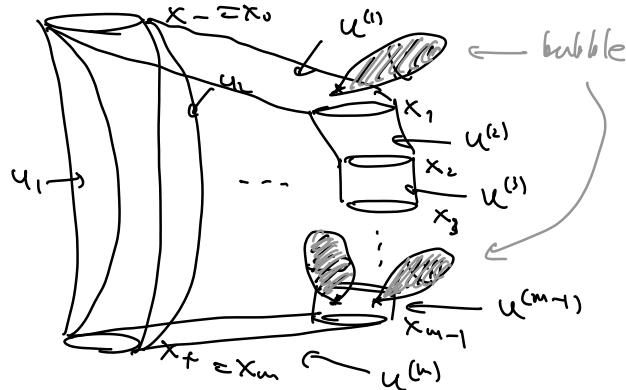
3. Another type of convergence (or compactness)

Then (Cor 3.4 in Salamon's Floer homology notes) Fix x_{\pm} closed fram
 orbits of H_{ham} system (M, ω, H, J) . If $\{u_n: \mathbb{R} \times S^1 \rightarrow M\}_{n \in \mathbb{N}}$
 are a seq of Floer cylinder connecting x_{\pm} , then \exists a
 seq of finitely many closed H_{ham} orbits x_0, \dots, x_m (with
 $x_0 = x_-$ and $x_m = x_+$) and finitely many Floer cylinders
 $\{u^{(i)}: \mathbb{R} \times S^1 \rightarrow M\}_{i=1}^m$ s.t. $u^{(i)}$ connects x_{i-1} and x_i
 and \exists finitely many seq $s_n^{(i)} \in \mathbb{R}$ s.t. $u_n(s + s_n^{(i)}, +) \xrightarrow{C_{\text{hw}}^{\infty}} u^{(i)}$
 for each $i = 1, \dots, m$
 except finitely many bubble pts. Moreover

$$\begin{aligned} \lim_{n \rightarrow \infty} [im(u_n)] &= [im(u_{\infty})] \\ &= [im(u^{(1)}) \# \dots \# im(u^{(m)})] + [\text{bubbles}] \end{aligned} \quad \text{← Floer spheres}$$

(in homotopy class $\pi_1(M; x_{\pm})$).

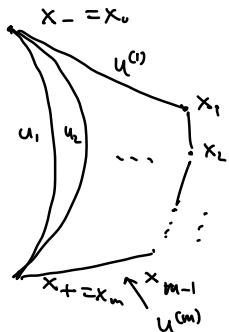
Here is the picture:



link: bubbles shows up naturally in the interior, when the new phenomenon occurs at the asymptotic ends.

Let's demonstrate the proof of this in Morse setting (statement):

- $x_-, x_+ \in \text{Crit}(F)$ for a Morse func $F: M, g \rightarrow \mathbb{R}$
- u_n smooth



- $x_- = x_-, x_1, \dots, x_{m-1}, x_m = x_+ \in \text{Crit}(F)$
- $u^{(i)}$ neg. gradient flowline of F connecting x_{i-1} and x_i
- $\exists S_n^{(i)} \in \mathbb{R}$ st. $u_n(S_n^{(i)}) \xrightarrow{C^0} u^{(i)}$ for each $i = 1, \dots, m$.

link Since the flowlines in Morse setting are 1-dim¹, there will be no bubbles.

Lemma Given n flowlines $\{u_n: \mathbb{R} \rightarrow (M, g, F)\}_n$, then exists a subseq (still denoted by) u_n and a gradient flowline u st. $u_n \xrightarrow{C^0} u$, i.e. $\forall R > 0, u_n|_{[-R, R]} \xrightarrow{C^0} u|_{[-R, R]}$.

* Recall Arzela-Ascoli Thm in analysis:

uniformly bounded + uniform equicontinuous $\Rightarrow \exists uniform C^0 convergence subsequence.
 (locally if domain is non-cpt and the limit is cont.)$

C^0 -bound C^1 -bound

pf - Since M is cpt, C^0 -bound condition is satisfied.

- Also since M is cpt and Morse func F is at least C^2 , we know

$$\exists C \text{ s.t. } \|\nabla F(x)\|_g \leq C \text{ for any } x \in M.$$

\Rightarrow For any n , any $s_1, s_2 \in \mathbb{R}$,

$$\begin{aligned} d(u_n(s_1), u_n(s_2)) &\leq \int_{s_1}^{s_2} \|\partial_s u_n(r)\|_g dr \\ &= \int_{s_1}^{s_2} \|\nabla F(u_n(r))\|_g dr \leq \underbrace{C(s_1 - s_2)}_{\text{this is ind of } n}. \end{aligned}$$

(In other words, $\forall \varepsilon > 0$, $\exists \delta$ s.t. $d(u_n(s_1), u_n(s_2)) < \varepsilon$ whenever $|s_1 - s_2| < \frac{\varepsilon}{C}$.)

Here, δ only depends on ε , not on s_1, s_2 and n .)

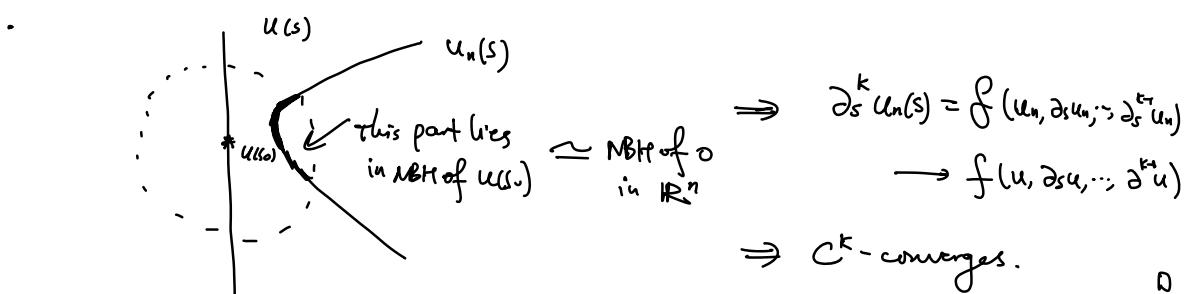
So $\{u_n\}_n$ is uniform equicontinuous $\Rightarrow \exists$ subseq $u_n \xrightarrow{C^0} u$ ONLY C^0

- We will use gradient flow equation inductively.

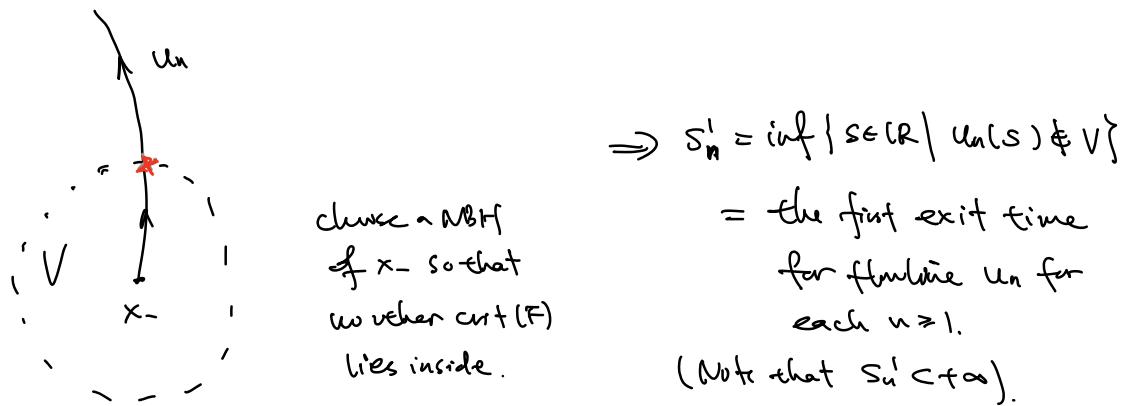
For the subseq $\{u_n\}$ obtained in the previous step,

$$u_n(s) = -\nabla F(u_n(s)) \xrightarrow{C^0} \nabla F(u(s))$$

$\Rightarrow u \in C^1(\mathbb{R}, M)$ and $\dot{u}(s) = \nabla F(u(s))$, i.e. u is a gradient flowline.



Now, let's confirm the conclusion of "broken Morse flowline" above.



Then for seq $\{u_n(s + s_n^1) : \mathbb{R} \rightarrow M\}_n$, it is a seq of gradient flowline of $F|_n(M, g)$ (since shifting constant does NOT affect the gradient equation).

Lemma above $\Rightarrow \exists$ subseq $u_n(s + s_n^1) \xrightarrow[C_{loc}^\infty]{} u^{(1)}$ for some gradient flowline $u^{(1)}$ of F .

Moreover, $u^{(1)}(0) \stackrel{def}{=} \lim_{n \rightarrow \infty} u_n(s_n^1) \in \partial V$

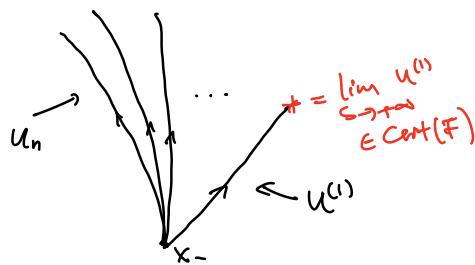
so $u^{(1)}(0) \notin \text{Crit}(F)$ and then $u^{(1)}$ is not constant.

Furthermore, for $s < 0$, $u_n(s + s_n^1) \in V$ for any n , s_n^1

$$u^{(1)}(s) = \lim_{n \rightarrow \infty} u_n(s + s_n^1) \in V$$

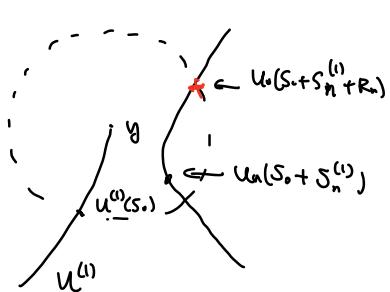
plus, we know (since $u^{(1)}$ is a gradient flowline), $\lim_{s \rightarrow -\infty} u^{(1)}(s) = \text{some crit pt of } F$.

$$\Rightarrow \lim_{s \rightarrow -\infty} u^{(1)}(s) = x_-$$



Rank. If $\lim_{s \rightarrow \infty} U_n(s) = x_+$, then the limit is a "non-broken" gradient flowline (which is OK!).

If $\lim_{s \rightarrow \infty} U_n(s) = y (\neq x_+) \in \text{Crit}(F)$, then consider a sufficiently small NBH W of y : by def $\exists s_0 \in \mathbb{R}$ s.t. $\forall s \geq s_0, U_n(s) \in W$.



$$\xrightarrow{n \gg 1} U_n(s_0 + s_n^{(1)}) \in W$$

Similarly as above, define

$$R_n := \inf \{r \geq 0 \mid U_n(s_0 + s_n^{(1)} + r) \notin W\}$$

which is finite b/c $U_n \xrightarrow{s \rightarrow \infty} x_+ (\neq y)$.

But $R_n \rightarrow \infty$ as $n \rightarrow \infty$ (due to C^0 -convergence).

Define $S_n^{(2)} := s_0 + s_n^{(1)} + R_n$. Then consider $U_n(s + S_n^{(2)})$.

Lemma again $\exists U_n(s + S_n^{(2)}) \xrightarrow{C^0} U^{(2)}(s)$ for another non-constant gradient flow of F .

Moreover, $\lim_{s \rightarrow -\infty} U_n(s) = \lim_{s \rightarrow -\infty} U_n(s + S_n^{(2)}) = y \leftarrow \text{check DIF.}$

Finally, we observe that this processes will terminate since there are only finitely many critical pts (and F needs to increase along any gradient flowline). \square