

- $\forall \text{ cpt } K \subset \mathbb{C}, \exists n \geq 1 \text{ s.t. } B_{\varepsilon_n} (d\psi_n(w_n)(0)) \supset K.$
- $\forall n, d\psi_n(0) = \frac{1}{|d\psi_n(w_n)|} d\psi_n(w_n) \Rightarrow |d\psi_n(0)| = 1$
- $\forall n, \forall w \in B_{\varepsilon_n} (d\psi_n(w_n)(0)), \text{ we have}$ by (iv)

$$|d\psi_n(w)| = \frac{1}{|d\psi_n(w_n)|} \left| d\psi_n \left(w_n + \underbrace{\frac{w}{|d\psi_n(w_n)|}}_{\in B_{\varepsilon_n}(w_n)} \right) \right| \leq \frac{2 |d\psi_n(w_n)|}{|d\psi_n(w_n)|} = 2. \quad (*)$$

Also, $E(\psi_n) = \int_{B_{\varepsilon_n} (d\psi_n(w_n)(0))} |d\psi_n|^2 d\psi_n = \int_{B_{\varepsilon_n} (d\psi_n(w_n)(0))} |d\psi_n(-)|^2 \frac{|d\psi_n|}{|d\psi_n(w_n)|^2} d\psi_n$

$\stackrel{\text{change}}{=} \int_{B_{\varepsilon_n}(w_n)} |d\psi_n|^2 d\psi_n < C.$

↑
uniform
upper bnd

and the third item right above implies that $|d\psi_n|_{L^\infty}$ is uniformly bnd.

- We claim (Exe) \exists subseq of ψ_n that converges to a J-ho/ map $\psi_\infty : (\mathbb{C}, j_{\mathbb{C}}) \xrightarrow{C_{loc}^\infty} (M, J)$ (C_{loc}^∞ meaning smoothly on any cpt subset of \mathbb{C}).

(we will come back to this when we discuss "compactness" later).

Then $E(\psi_\infty) = \lim_{n \rightarrow \infty} E(\psi_n) < C$ and $|d\psi_\infty(0)| = \lim_{n \rightarrow \infty} |d\psi_n(0)| = 1$
 $(\Rightarrow \psi_\infty \text{ is not constant})$

Consider $\widetilde{\psi}_\infty : \mathbb{C} \setminus \{0\} \rightarrow M$ by $\widetilde{\psi}_\infty(z) = \psi_\infty(1/z)$

$\Rightarrow E(\widetilde{\psi}_\infty) < C$ and then $\widetilde{\psi}_\infty$ extends to a J-ho/ map $\mathbb{C} \rightarrow M$.

$\xrightarrow{\text{glue}}$ $\psi : (\mathbb{C}^2, j_{\mathbb{C}^2}) \rightarrow (M, J)$ J-ho/ ↑
by Removal of Singularities.

$\psi_\infty \text{ and } \widetilde{\psi}_\infty$ $\mathbb{C} \cup \{\infty\}$

$$\Rightarrow E(v) = h \quad (\text{since } v \text{ is non-constant b/c } v|_{\mathbb{C}} = v_0 : \mathbb{C} \rightarrow M)$$

$$\Rightarrow E(v_n|_{B_{\Sigma_n}(w_n)}) = E(v_n) \geq h - \varepsilon.$$

For any given NBTI U of \mathbb{C} , $\exists n$ s.t. $B_{\Sigma_n}(w_n) \subset U$, so

$$\varinjlim_{n \rightarrow \infty} E(v_n|_{B_{\Sigma_n}(w_n)}) \geq h \quad \Rightarrow \quad z \text{ is a bubble pt.} \quad \square$$

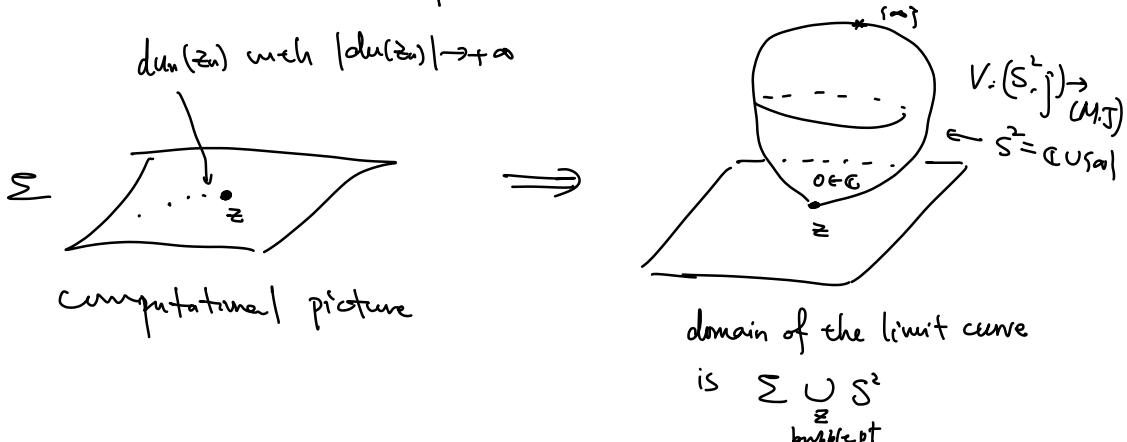
Rank* The uniform bound on energy $E(v_n)$ is to guarantee the application of the removal of singularities.

Rank The compactness in Claim above comes from two conditions:
 (cf. McDuff-Salamon big book, Thm B.4.2)
 target M is compact + $\underbrace{\text{uniform upper bound of } \|dv_n\|}_{C^1\text{-bound}}$
 This can be weakened that
 $\text{im}(v_n) \cup \text{im}(v_0) \subset \text{a cpt subset in } M.$

Rank The same argument works for J_n -hol curve v_n with

$$J_n \rightarrow J \quad (\text{and still bounded energy } E(v_n)) \Rightarrow \exists v : (S^1, j) \rightarrow (M, J) \text{ which is } J\text{-hol.}$$

Rank Here is a schematic picture for the "bubble" v :



Rank By discussion above, $z^{\epsilon \Sigma}$ is a bubble pt of a single $u: (\Sigma, j) \rightarrow (M, J)$ iff $\exists z_n \rightarrow z$ in Σ s.t.

$$|d_{\mathcal{U}}(z_n)| \rightarrow +\infty.$$

We claim that for closed Σ (and cpt M), u does not have any bubble pt: $[u(\Sigma)] \in H^*(M; \mathbb{Z})$ and recall

$$E(u) = \int_{\Sigma} u^* \omega = \langle [\omega], [u(\Sigma)] \rangle < \infty$$

\Rightarrow If z is a bubble pt, then any NBH U of z has $E(u/u) < \infty$.

Then $|d u(z_i)| \rightarrow \infty$ implies that

$$\sum_{n_i} \int_{B_{\varepsilon_{n_i}}(w_{n_i})} v_{n_i}^* \omega = \sum_{n_i} \int_{B_{\varepsilon_{n_i}}(w_{n_i})} u^* \omega \leq \int_{\mathcal{U}} u^* \omega < +\infty$$

$\overbrace{\qquad\qquad\qquad}^{W_{n_i} \rightarrow \mathbb{Z} \text{ and } \varepsilon_{n_i} \rightarrow 0}$

$\overbrace{\qquad\qquad\qquad}^{B_{\varepsilon_{n_i}}(w_{n_i})}$

oo-by many sum!

$$\Rightarrow \int_{B_{\varepsilon n_i} \setminus \{du(w_n) = 0\}} V_{n_i}^* \omega \rightarrow 0 \quad \text{as } n_i \rightarrow +\infty$$

$$\Rightarrow \int_C V_\infty^* \omega = 0 \quad (\text{which contradicts } V_\infty \text{ is non-constant})$$

In other words, if $\int_{\gamma} u \omega < +\infty$, then near z , $|du| \leq C$

for some $c = c(u)$.

(cf. $u : (U \setminus \{z\}, j) \rightarrow (M, \bar{j})$, finite energy $\Rightarrow z$ is removable.)

→ NBK

See the
end of Section 9.1.
in [Wen]

↑
again, consider the
hypothesis M is cpt
or the image is free
in a cpt subcategory.

2. Bubble tree

The following result is a direct cor of the Prop above, which describe the global behavior of the limit of a seq of J -hol curves.

Then $\left\{ u_n: (\overset{\text{closed}}{\Sigma}, j) \xrightarrow{\text{cpt}} (M, \omega, J_n) \right\}_n$ J_n -hol where $J_n \rightarrow J$.

Assume $E(u_n) < C$ for a uniform constant C . Then \exists

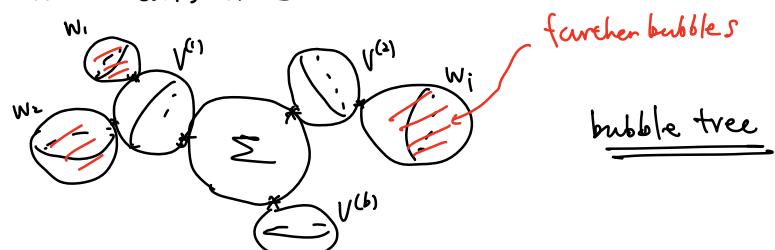
a finite collection of pts $z^{(1)}, \dots, z^{(b)} \in \Sigma$ and a J -hol curve $u: \Sigma \rightarrow M$ s.t.

- For any cpt subset $K \subset \Sigma \setminus \{z^{(1)}, \dots, z^{(b)}\}$, we have $u_n|_K \xrightarrow{C^\infty} u|_K$.
- There are non-constant J -hol sphere $V^{(1)}, \dots, V^{(b)}: S^2 \rightarrow M$ s.t. $V^{(i)}(\infty) = u(z^i)$
- For some finite (possibly empty) collection of non-constant J -hol sphere $w_i: S^2 \rightarrow M$ r.t. for each i , $w_i(\infty)$ is in the image of either of some other w_j or of some $V^{(i)}$, we have

furthen steps
of bubbles.

$$\lim_{n \rightarrow \infty} (u_n)_*([\Sigma]) = u_*([\Sigma]) + \sum_{j=1}^b V^{(j)}_*([S^2]) + \sum_i (w_i)_*([S^2])$$

If one views $\{u, \{V^{(j)}\}_{j=1}^b, \{w_i\}_i\}$ together over a single domain, then this domain looks like



Rank One can use this bubble tree to define a topology (called Gromov topology). In particular, one defines compactness via sequential compactness to a limit described by $\mathcal{J}\text{-hol}$ maps over bubble tree.

\Rightarrow compactification of the moduli space (of $\mathcal{J}\text{-hol}$ curve)
 \Rightarrow Gromov-Witten invariant ...

For more details, see Chapter 5 in McDuff-Salamon's big book.

Proof of Thm

- Suppose $\sup_n \|d\mu_n\|_{L^\infty(\Sigma)} < +\infty$, then we are DONE (no bubble pt and $b=0$)
 Suppose not, i.e. $|d\mu_n(z_n)| \rightarrow +\infty$ for some seq $z_n \rightarrow z^{(0)}$ ($\notin \Sigma$ is cpt).
 $\xrightarrow{\text{Prop}} z^{(0)} \in \Sigma$ is a bubble pt of $\{\mu_n\}$.
 $\xrightarrow{\text{by def}} \lim_n E(\mu_n|_{U_{\text{NBH of } z^{(0)}}}) = \lim_n E(\mu_n|_{B_\delta(z^{(0)})}) \geq h (>0) \quad (\star)$
 & for any (small) $\delta > 0$

Then consider $\Sigma \setminus \{z^{(0)}\}$.

- Suppose $\sup_n \|d\mu_n\|_{L^\infty(K)} < C(K)$ uniform constant for every cpt subset $K \subset \Sigma \setminus \{z^{(0)}\}$, then Thm/FAET above implies:
 $\exists \mathcal{J}\text{-hol } u: \Sigma \setminus \{z^{(0)}\} \rightarrow (M, \omega, \bar{J})$ and $\mu_n \xrightarrow{C\text{-loc}} u$.

Then $(\star) \Rightarrow \forall n, E(\mu_n|_{K \subset \Sigma \setminus \{z^{(0)}\}}) < C - h$
 \uparrow
 any cpt K
 $\Rightarrow E(u|_{K \subset \Sigma \setminus \{z^{(0)}\}}) < C - h$

\hookrightarrow independent of K .

\Rightarrow u extends to a \mathcal{T} -hol $(\Sigma, j) \rightarrow (M, \omega, \mathcal{T})$
 removal
 of singularities

- Suppose \exists cpt $K \subset \Sigma \setminus \{z^{(1)}\}$ s.t. $\exists z_n \rightarrow z^{(2)}$ in K with $|d_{\mathcal{U}_n}(z_n)| \rightarrow +\infty$. In particular, $z^{(2)} \neq z^{(1)}$.

$\Rightarrow z^{(2)}$ is a bubble pt of $\{u_n\}$

$$\Rightarrow \varinjlim_n E(u_n|_{\underset{\text{NBH of } z^{(2)}}{\mathcal{U}_n}}) = \varinjlim_n E(u_n|_{B_\delta(z^{(2)})}) \geq h (>0).$$

Then consider $\Sigma \setminus \{z^{(1)}, z^{(2)}\}$.

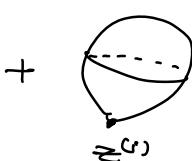
Inductively, we obtain $\Sigma \setminus \{z^{(1)}, \dots, z^{(b)}\}$ and $u: (\Sigma, j) \rightarrow (M, \omega, \mathcal{T})$
 after removal of singularities

- For each $z^{(i)} \in \Sigma$, consider

$$\lim_{\delta \rightarrow 0} \left(\varinjlim_{n \rightarrow \infty} E(u_n|_{B_\delta(z^{(i)})}) \right) =: m(z^{(i)}) \quad (> h)$$

one can take subseq of $\{u_n\}$
 so that \varinjlim_n above is a limit

$$\Rightarrow \varinjlim_{n \rightarrow \infty} E(u_n) = E(u) + \sum_{i=1}^b m(z^{(i)})$$



$\{m(z^{(i)})\}_i$ measures
 the energy lost
 when removing the
 singularities.

The uniform upper bound of $E(u_n)$ also implies that $b < +\infty$.

- Since there are only finitely many bubble pt. for each $\mathcal{Z}^{(i)}$ and its NBH (disjoint from other NBHs of $\mathcal{Z}^{(j)} \neq \mathcal{Z}^{(i)}$), carry out the renormalization trick:

$$\exists \text{ J-hol spheres } V^{(i)}: (\mathbb{S}^2, j) \rightarrow (M, \omega, J).$$

In particular, along the process of getting $V^{(i)}$, \exists further bubble pts for seq of J-hol V_n .

- Finally, the top conclusion is derived in a straightforward way. For a precise argument, see Thm 5.2.2 in (ii) in McDuff - Salamon's big book. \square

Pink A less obvious observation from the last top conclusion in Thm 13 that when $n \gg 1$ the homology class, $[u_n(\Sigma)]$ is constant (since $H^2(M; \mathbb{Z})$ is a discrete set).

Cor. Let K be a cpt metric space and $\sigma: K \xrightarrow{\sigma_{(k)}} \mathcal{T}(M, \omega)$ be a continuous map. Then for every $C > 0$, \exists only finitely many htp classes $A \in \pi_2(M)$ with

$$\langle [\omega], A \rangle \leq C$$

that can be represented by $J_{\sigma(k)}$ -hol spheres for some $k \in K$.