

$$\begin{aligned}
W(s_0, t_0) = V(0,0) &= \frac{1}{\pi r^2} \int_{B(0,r)} V \\
&= \frac{1}{\pi r^2} \int_{B(s_0, t_0), r} W + \frac{b}{4\pi r^2} \int_{B(0,r)} (s^2 + t^2) ds dt \\
&= \frac{b}{4\pi r^2} \int_0^r \int_0^{2\pi} \rho^2 \rho d\rho d\theta + \frac{1}{\pi r^2} \int_{B(s_0, t_0), r} W \\
&= \frac{b}{4\pi r^2} 2\pi \cdot \frac{1}{4} r^4 + \frac{1}{\pi r^2} \int_{B(s_0, t_0), r} W \\
&= \frac{br^2}{8} + \frac{1}{\pi r^2} \int_{B(s_0, t_0), r} W. \quad \square
\end{aligned}$$

Based on these lemmas, we have the following "ptwise" estimation:

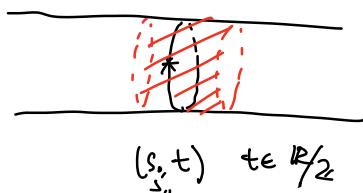
Prop Suppose $\xi: \mathbb{R} \times \mathbb{S}^1 \rightarrow \mathbb{R}^{2n}$ satisfies $D\xi = 0$, then $\|\xi(s_0, t_0)\| \in \mathbb{R}$, we have

$$\|\xi(s_0, t_0)\|^2 \leq \frac{8a}{\pi} \int_{B(s_0, t_0), 1} \|\xi(s, t)\|^2 ds dt$$

for some $a \geq 1$.

Here we can take the radius 1 smaller (to fit into $\mathbb{R} \times \mathbb{S}^1$ if needed) then the constant $\frac{8a}{\pi}$ will be changed or rescaled accordingly.

Note that this implies the desired exponential decay of $\|\xi(s_0, t_0)\|$.



$$\begin{aligned}
&\Rightarrow \int_{s_0-\epsilon}^{s_0+\epsilon} \int_0^1 \|\xi(s, t)\|^2 dt ds \\
&\leq c \int_{s_0-\epsilon}^{s_0+\epsilon} e^{-\delta s} ds \\
&= \frac{c}{-\delta} (e^{-\delta(s_0+\epsilon)} - e^{-\delta(s_0-\epsilon)}) \\
&= C' e^{-\delta s_0} \cdot O(\epsilon).
\end{aligned}$$

apply $\int_0^1 \|\xi(s, t)\|^2 dt \leq ce^{-\delta|s|}$ (uniformly)
to a NBH of s_0

Within the red shaded region, for any (s_0, t_0) , \exists NBF $B((s_0, t_0), r)$ \subset red shaded region, so by prop above,

$$\begin{aligned} \|\zeta(s, t)\|^2 &\leq C \int_{B((s_0, t_0), r)} \|\zeta(s, t)\|^2 ds dt \\ &\leq C'' e^{-\delta s_0} \end{aligned}$$

defending in Σ .

where $C'' = C''(\delta, \Sigma)$, independent of $s_0 \in \mathbb{R}$. Take Σ as a conform width, we get $\|\zeta(s_0, t)\| \leq \sqrt{C''} e^{-\frac{\delta}{2} s_0}$ for $s_0 \in \mathbb{R}$. DUE.

Pf of prop above: The only trouble is that the conclusion of Lemma 2 do NOT fit into the hypothesis of Lemma 2. Here is a trick: denote $w(s, t) = \|\zeta(s, t)\|^2$

Consider $f: [0, 1] \rightarrow \mathbb{R}$ defined by

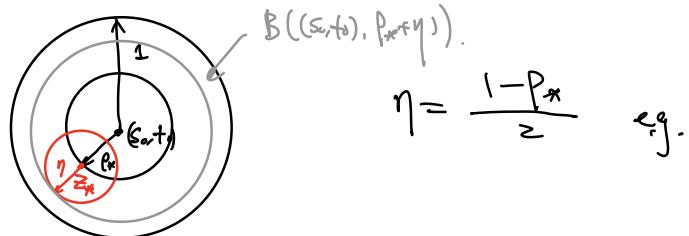
$$p \rightarrow ((-p)^2 \sup_{B((s_0, t_0), p)} w)$$

This decreases when $p \uparrow$ *This increases when $p \uparrow$*

Then f is continuous with $f(0) = w(s_0, t_0)$ and $f(1) = 0$.

$$\begin{aligned} \Rightarrow \exists p_* \in [0, 1] \text{ s.t. } \max_{p \in [0, 1]} f = f(p_*) \\ = ((-p_*)^2 \sup_{B((s_0, t_0), p_*)} w) = ((-p_*)^2 w(z_*)) \end{aligned}$$

for some $z_* \in B((s_0, t_0), p_*)$. Now choose $\eta \in (0, 1)$ so that we have the following picture:



$$\begin{aligned} \sup_{B(z_*, \eta)} w &\leq \sup_{B(S_*, t_0), \rho_* + \eta} w = \frac{f(\rho_* + \eta)}{(1 - \rho_* - \eta)^2} = \frac{4f(\rho_* + \eta)}{(1 - \rho_*)^2} \\ &\leq \frac{4f(\rho_*)}{(1 - \rho_*)^2} \leq 4w(z_*) \end{aligned}$$

By Lemma 1 (applied to $B(z_*, \eta)$), we get

$$\Delta w \geq -\alpha w \geq \underbrace{-\alpha \cdot 4w(z_*)}_{= -b}$$

for $B(z_*, r), r \leq \eta$

Then Lemma 2 applies, and we get

$$\begin{aligned} w(z_*) &\leq \frac{\alpha \cdot 4w(z_*) r^2}{\epsilon} + \frac{1}{\pi r^2} \int_{B(z_*, r)} w \\ &\stackrel{\text{by Lemma 2}}{\leq} \frac{\alpha w(z_*) r^2}{\epsilon} + \frac{1}{\pi r^2} \int_{B((S_*, t_0), 2)} w \end{aligned}$$

Now, choose $r = \eta/\sqrt{\alpha}$, then

$$\begin{aligned} w(z_*) &\leq \frac{w(z_*) \eta^2}{\epsilon} + \frac{\alpha}{\pi \eta^2} \int_{B((S_*, t_0), 1)} w \\ &\leq \frac{w(z_*)}{\epsilon} + \frac{\alpha}{\pi \eta^2} \int_{B((S_*, t_0), 1)} w \end{aligned}$$

$$\Rightarrow w(z_*) \leq \frac{2\alpha}{\pi \eta^2} \int_{B((S_*, t_0), 1)} w$$

$$\Leftrightarrow \eta^2 w(z_*) \leq \frac{2\alpha}{\pi} \int_{B((S_*, t_0), 1)} w$$

Then $w(S_*, t_0) = f(w) \leq f(\rho_*) = (1 - \rho_*)^2 w(z_*)$

$$= 4\eta^2 w(z_*) \leq \frac{8\alpha}{\pi} \int_{B((S_*, t_0), 1)} w. \quad \square$$