

Rmk The proof above crucially bases on the fact that there are only finitely many critical pts of F (due to the assumption that F is Morse). Without this assumption, the conclusion in Prop above may fail.

Question: Can we get more accurate description of the convergence behavior near the critical pts?

Ex (Linear case)

Every Morse fcn $F = \sum x_i$ near critical pt, so consider \mathbb{R}^n and

$$F(\underbrace{x_1, \dots, x_n}_x) = \frac{1}{2} x^T A x$$

where $A = \begin{pmatrix} a_1 & \dots & a_n \end{pmatrix}$ where $a_1 \leq \dots \leq a_k < 0 < a_{k+1} \leq \dots \leq a_n$.

Then gradient flow $u: \mathbb{R} \rightarrow \mathbb{R}^n$ satisfying

$$\begin{aligned} (u_1(s), \dots, u_n(s)) &= (\nabla F)(u(s)) \\ &= (a_1 u_1(s), \dots, a_n u_n(s)) \end{aligned}$$

$$\Leftrightarrow \forall i, \quad u_i(s) = a_i u_i(s) \Rightarrow u_i(s) = C_i e^{a_i s}$$

Assume $\lim_{s \rightarrow -\infty} u(s) = 0 \in \mathbb{R}^n$, then

- For $a_1, \dots, a_k < 0$, $u_i(s) \equiv 0$

- For $a_{k+1}, \dots, a_n > 0$, $u_i(s)$ satisfies $\partial_s^k u_i(s) = \underbrace{C_i a_i^k}_{=: M_k} e^{a_i s}$.

In general, we have the following "exponential decay" phenomenon.

Thm (M, F) , $u: \mathbb{R} \rightarrow M$ gradient flow (s.t. $\lim_{s \rightarrow -\infty} u(s) = p$).

choose a local coordinate around p s.t. it lies at the origin.

Then \exists a constant $c > 0$, $M_k \in \mathbb{R}$ (for each $k \in \mathbb{N}_{\geq 0}$), s.t.

$\exists T \in \mathbb{R}$ with

$$\|\partial_s^k u(s)\| \leq M_k e^{cs} \quad \text{for } s \leq T.$$

An analogue statement holds for positive asymptotics.

Rank In the example above, $c = \min\{a_{k+1}, \dots, a_n\} = a_{k+1}$.

Start from the following observation: in local coordinate w.r.t Euclidean metric
(when $F(x) = \frac{1}{2}a_1 x_1^2 + \dots + \frac{1}{2}a_n x_n^2$)

$$\begin{aligned} \|\nabla F(x)\| &= \sum_{i=1}^n (a_i x_i)^2 = \sum_{i=1}^n |a_i| |a_i| x_i^2 \\ &\geq \left(\min_{i=1}^n |a_i| \right) 2|F(x)| \end{aligned}$$

$$\Rightarrow |F(x)| \leq \underbrace{\frac{1}{2 \min\{a_k, a_{k+1}\}}}_{a_1 \leq \dots \leq a_k < 0 < a_{k+1} \leq \dots \leq a_n} \cdot \|\nabla F(x)\|^2 \quad (\text{assuming again } \textcircled{D})$$

This is usually called action-energy inequality.

Lemma (M, g) , $F: M \rightarrow \mathbb{R}$, Morse. $p \in \text{Crit}(F)$, then \exists a NBH U of p in M

and a constant $K > 0$ s.t. $\forall x \in U$, we have

$$|F(x)| \leq \frac{1}{K} \cdot \|\nabla_g F(x)\|_g^2 \quad \forall x \in U.$$

Pf. It induces the estimation \textcircled{D} above if we knew how this estimation

is done in a different metric g .

In general, in a NBH U (of p) in M , two Riemannian metrics g_1, g_2 s.t.

$\exists c > 0$, $\| \cdot \|_{g_1} \leq c \| \cdot \|_{g_2}$. Then
depending on U, g_1, g_2

$$0 \leq g_1(c^2 \nabla_{g_1} F - \nabla_{g_2} F, c^2 \nabla_{g_1} F - \nabla_{g_2} F)$$

$$= c^4 g_1(\nabla_{g_1} F, \nabla_{g_1} F) - 2c^2 g_1(\nabla_{g_1} F, \nabla_{g_2} F) + g_1(\nabla_{g_2} F, \nabla_{g_2} F)$$

Note that

$$g_1(\nabla_{g_1} F, \nabla_{g_1} F) = dF(\nabla_{g_1} F) = g_2(\nabla_{g_2} F, \nabla_{g_2} F)$$

$$g_1(\nabla_{g_2} F, \nabla_{g_2} F) \leq c^2 g_2(\nabla_{g_2} F, \nabla_{g_2} F)$$

$$\begin{aligned} \Rightarrow 0 &\leq c^4 g_1(\nabla_{g_1} F, \nabla_{g_1} F) - 2c^2 g_2(\nabla_{g_1} F, \nabla_{g_2} F) + c^2 g_2(\nabla_{g_2} F, \nabla_{g_2} F) \\ &= c^4 g_1(\nabla_{g_1} F, \nabla_{g_1} F) - c^2 g_2(\nabla_{g_1} F, \nabla_{g_2} F) \end{aligned}$$

$$\Rightarrow \|\nabla_{g_2} F\|_{g_2}^2 \leq c^2 \|\nabla_{g_1} F\|_{g_1}^2$$

Now, apply this to $g_2 = \text{Euclidean metric on } \mathbb{R}^n$, $g_1 = g$ (the given metric on M).

$$\text{Then } |F(x)| \leq \frac{1}{2 \min\{-a_k, a_{k+1}\}} \cdot \|\nabla_{g_2} F(x)\|_{g_2} \quad \text{Euclidean.}$$

$$\leq \underbrace{\frac{1}{2 \min\{-a_k, a_{k+1}\}}}_{\text{depending on } U, g_1, g_2} \cdot c^2 \cdot \|\nabla_{g_1} F(x)\|_g^2 \quad \forall x \in U$$

$$\text{so } k := \frac{2 \min\{-a_k, a_{k+1}\}}{c^2}$$

□

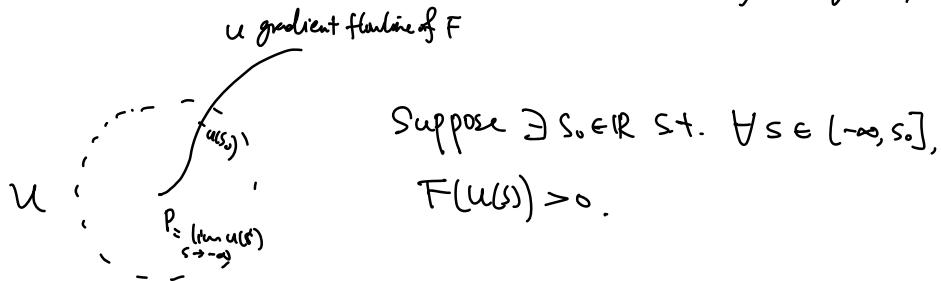
Ex Here is a direct implication of the action-energy inequality above.

u gradient flowline of F

suppose for $s \in [s_-, s_+]$, $F(u(s)) > 0$, then
one can estimate the $d_g(u(s_-), u(s_+))$.
inside U , p is the only pt s.t. $\nabla_g F = 0$.

$$\begin{aligned}
 d_g(u(s_-), u(s_+)) &= \int_{s_-}^{s_+} \|\partial_s u(s)\|_g ds \\
 &= \int_{s_-}^{s_+} \|\nabla_g F(u(s))\|_g ds \\
 &= \int_{s_-}^{s_+} \frac{\|\nabla_g F(u(s))\|_g^2}{\|\nabla_g F(u(s))\|_g} ds \\
 \text{apply } \|\nabla_g F(u(s))\|_g &\geq \sqrt{F(u(s))} \\
 \text{for } s \in [s_-, s_+] &\geq \frac{1}{\sqrt{F}} \int_{s_-}^{s_+} \frac{\|\nabla_g F(u(s))\|_g^2}{\sqrt{F(u(s))}} ds \\
 \|\nabla_g F\|_g^2 &= g(\nabla F, \nabla F) \\
 = dF(\nabla_g F) &\Rightarrow \frac{1}{\sqrt{F}} \int_{s_-}^{s_+} \frac{dF(\nabla_g F(u(s)))}{\sqrt{F(u(s))}} ds \\
 &= \frac{1}{\sqrt{F}} \int_{s_-}^{s_+} \frac{dF(\partial_s u(s))}{\sqrt{F(u(s))}} ds \\
 &= \frac{1}{\sqrt{F}} \int_{s_-}^{s_+} \frac{\partial_s F(u(s))}{\sqrt{F(u(s))}} ds \\
 &= \frac{2}{\sqrt{F}} \int_{s_-}^{s_+} \partial_s \sqrt{F(u(s))} ds = \frac{2}{\sqrt{F}} (\sqrt{F(u(s_+))} - \sqrt{F(u(s_-))}) \\
 &\leq \frac{2}{\sqrt{F}} \sqrt{F(u(s_+))}.
 \end{aligned}$$

Ex Here is another implication of action-energy inequality.



$$F(u(s)) \leq \frac{1}{k} \|\nabla F(u(s))\|_g^2 = \frac{1}{k} \frac{d}{ds} F(u(s))$$

$$\Rightarrow \frac{\frac{d}{ds} F(u(s))}{F(u(s))} \geq k \quad \text{so} \quad \frac{d}{ds} \ln F(u(s)) \geq k$$

$$\Rightarrow \int_s^{s_0} \frac{d}{ds} \ln F(u(s)) \, ds \geq k \cdot (s_0 - s)$$

$$\Leftrightarrow \ln F(u(s_0)) - \ln F(u(s)) \geq k(s_0 - s) \Rightarrow \ln F(u(s)) \leq \ln F(u(s_0)) - k(s_0 - s)$$

take
exponential

$$\Rightarrow F(u(s)) \leq F(u(s_0)) \cdot e^{-k(s_0 - s)}$$

and this holds for $s \in (-\infty, s_0]$.

Now, back to the proof of Theorem above.

If. It suffices to prove $\|u(s)\|_g \leq M_0 e^{cs}$ for $s \in (-\infty, T]$.

We can assume $\exists T$ s.t. $u(s) \in \mathcal{U}$ (NBH of $p \in \text{Crit}(F)$) for any $s \in (-\infty, T]$, where \mathcal{U} is chosen so that action-energy inequality holds. Up to a shift of F (so that $F(p) = 0$), then back to Ex 5

above apply. Then for $[s_-, s_+ \leq s_0] \subset (-\infty, T]$,
we can take $s_0 = T$

$$\begin{aligned} d_g(u(s_-), u(s_+)) &\leq \frac{2}{\sqrt{K}} \sqrt{F(u(s_+))} \\ &\leq \frac{2}{\sqrt{K}} \sqrt{F(u(s_0))} \cdot e^{\frac{-K(s_0-s_+)}{2}} \end{aligned}$$

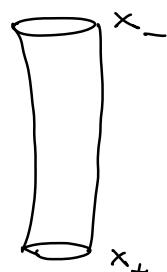
Set $M_0 := \frac{2}{\sqrt{K}} \sqrt{F(u(s_0))} e^{-\frac{Ks_0}{2}}$ and $C = \frac{K}{2}$. Then set $s_- \rightarrow -\infty$,

$$d_g(p, u(s_+)) \leq M_0 e^{Cs_+} \quad \forall s_+ \in (-\infty, T]$$

Finally, this also implies that $\partial_s u, \partial_s^2 u, \dots$ converges to 0 exponentially.

3. Exponential decay in Floer theory 1

In Hofer Floer theory, the moduli space consists of Hofer Floer trajectories



$$u: (\mathbb{R} \times S^1, j_{\text{std}}) \rightarrow (M, \omega, J)$$

$$\bar{\partial}_{H,J}(u) := \frac{\partial u}{\partial s} + J(u) \frac{\partial u}{\partial \xi} - \nabla H_+(u) = 0$$

perturbed J-hol curve equation

we will see from
the next thm that now
the asymptotic condition
can be replaced by another
equivalent condition.

$$\left. \begin{aligned} &+ \text{asymptotic condition} \\ &\lim_{s \rightarrow \pm\infty} u(s, t) = x_{\pm}(t) \end{aligned} \right\}$$

Then $\textcircled{1} E(u) < \infty \Rightarrow \textcircled{2} \exists$ closed Ham orbit x_\pm of (M, ω, J, H)

$\uparrow \quad \text{s.t. } \lim_{t \rightarrow \pm\infty} u(s, t) = x_\pm(t) \quad \text{and}$

$\downarrow \quad \lim_{s \rightarrow \pm\infty} \partial_s u(s, t) = 0 \quad \Rightarrow \text{both are uniform}$
in the t -variable

$\textcircled{3} \quad \exists \delta > 0 \text{ and } C > 0 \text{ s.t. } \|\partial_s u(s, t)\|_{g_J} \leq C e^{-\delta|s|}$

for all $(s, t) \in \mathbb{R} \times S^1 \setminus \mathbb{R} \times \mathbb{R}/2$

Note that the third one $\textcircled{3}$ implies the first one $\textcircled{1}$:

$$\begin{aligned}
 E(u) &= \int_{S^1} \int_{\mathbb{R}} \|\partial_s u(s, t)\|_{g_J}^2 ds dt \leq C^2 \cdot 1 \cdot \int_{-\infty}^{\infty} e^{-2\delta|s|} ds \\
 &= 2C^2 \int_0^{\infty} e^{-2\delta s} ds \\
 &= \frac{2C^2}{-2\delta} e^{-2\delta s} \Big|_0^{\infty} < \infty.
 \end{aligned}$$

\Rightarrow All three (itemized) statements in this Then are equivalent!

Exe : $\textcircled{1} \Rightarrow \textcircled{2}$

We will show $\textcircled{2} \Rightarrow \textcircled{1}$.

Formulate our setting: For u satisfies $\bar{\partial}_{H,J}(u) = 0$, compute its linearization $D_u: \mathcal{L}^p(\mathbb{R} \times S^1, u^* TW) \rightarrow W^{1,p}(\mathbb{R} \times S^1, u^* TM)$: \leftarrow could be with even higher regularity type

$$D_u(f) = \nabla_{\partial_s} f + J(u) \nabla_{\partial_t} f + (\nabla_{\partial_s} J(u) \partial_t u) - \nabla_f \nabla_{H+}(u)$$

(cf. computation of $\bar{\partial} S^1$ near the end of SFT 2).

One can check $D_u(\partial_s u) = 0$

Under a trivialization of $\overset{U^*TM}{\downarrow} \mathbb{R} \times S^1$, D_u is simplified as

$$D(\zeta) = \overset{P}{\partial_s} \zeta + J_0 \overset{P}{\partial_t} \zeta + S \cdot \zeta \quad (\#)$$

$\zeta: \mathbb{R} \times S^1 \rightarrow \mathbb{R}^{2n}$

where $S(s, t): \mathbb{R} \times S^1 \rightarrow M_{2n \times 2n}(\mathbb{R})$ satisfies $\lim_{s \rightarrow \pm\infty} S(s, t) = S_{\pm}(t)$, $S_{\pm}(t)$ are symmetric matrices. Moreover, $\lim_{s \rightarrow \pm\infty} \frac{\partial S}{\partial s}(s, t) = 0$ (uniformly).

The proof of $\textcircled{1} \Rightarrow \textcircled{2}$ lies in the following proposition.

Prop Suppose $\overset{P}{\partial}_{t0} u = 0$, and $\zeta: \mathbb{R} \times S^1 \rightarrow \mathbb{R}^{2n}$ satisfies $D\zeta = 0$ and

$$\int_0^1 \|\zeta(s, t)\|_g^2 dt \rightarrow +\infty$$

$\overset{P}{\partial}_{t0}$
Euclidean metric

then $\exists \delta > 0$ (ind of u) and $C > 0$ s.t. $\int_0^1 \|\zeta(s, t)\|_g^2 dt \leq Ce^{-\delta|s|} \quad \forall s \in \mathbb{R}$.

Pf Consider

$$f(s) = \frac{1}{2} \int_0^1 \|\zeta(s, t)\|_g^2 dt : \mathbb{R} \rightarrow \mathbb{R}_{\geq 0}$$

Then

$$f'(s) = \int_0^1 \left\langle \zeta(s, t), \frac{\partial \zeta}{\partial s}(s, t) \right\rangle dt$$

$$f''(s) = \int_0^1 \left\| \frac{\partial \zeta}{\partial s}(s, t) \right\|_g^2 dt + \int_0^1 \left\langle \zeta(s, t), \frac{\partial^2 \zeta}{\partial s^2}(s, t) \right\rangle dt$$

$$\text{Due to } (\#), \quad \frac{\partial \zeta}{\partial s} = -J_0 \frac{\partial \zeta}{\partial t} - S \zeta$$

$$\frac{\partial^2 \zeta}{\partial s^2} = -J_0 \frac{\partial^2 \zeta}{\partial s \partial t} - \frac{\partial S}{\partial s} \zeta - S \frac{\partial \zeta}{\partial s} \Rightarrow \int_0^1 \left\langle \zeta, \frac{\partial^2 \zeta}{\partial s^2} \right\rangle dt =$$