

- Consider $L < \frac{r_0}{6}$. We claim $\exists B(p, \frac{r_0}{3}) \subset M$, s.t. $E(u)$ implies that

$$B(p, \frac{r_0}{3}) \supset u(\Sigma)$$

To prove this claim, we divide into two cases.

Case 1 $\partial\Sigma = \emptyset$. (In this case, we don't need cond. $L < \frac{r_0}{6}$.)

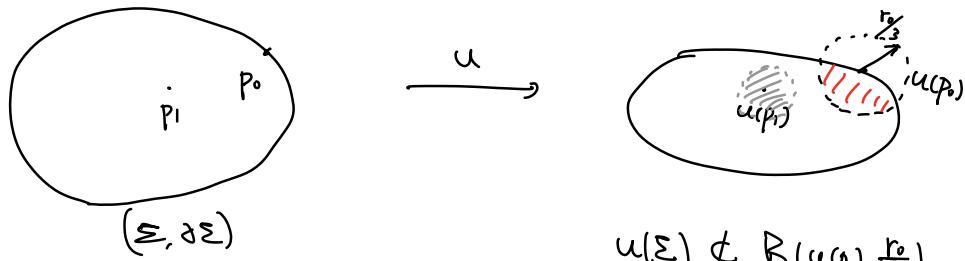
Then the assumption in monotonicity lemma holds. ^{automatically.} If none of $B(p, \frac{r_0}{3}) \subset M$ contains $u(\Sigma)$, then

$$L > E(u) = \text{Area}(u) > \text{Area}(u(\Sigma) \cap B(p, r)) \geq C r^2$$

for any $r < \frac{r_0}{3}$. Then up to Σ , we get

$$C \cdot \left(\frac{r_0}{6}\right)^2 > C \cdot \left(\frac{r_0}{3}\right)^2 \rightarrow \Leftarrow.$$

Case 2 $\partial\Sigma \neq \emptyset$. Again, suppose the conclusion does NOT hold.



$u(\Sigma) \notin B(u(p_0), \frac{r_0}{3})$ ↳ $u(\Sigma) \cap B(u(p_0), \frac{r_0}{3})$ is non-empty

\Rightarrow for $p_1 \in \Sigma$ with $\text{dist}(u(p_1), u(p_0)) \geq \frac{r_0}{3}$, we have

$$\text{dist}(u(p_1), u(\partial\Sigma)) \geq \frac{r_0}{6} \quad (\text{b/c otherwise } \text{dist}(u(p_1), u(p_0)) \leq \frac{r_0}{6})$$

$$\leq \text{dist}(u(p_1), u(p_\pi)) + \text{dist}(u(p_\pi), u(p_0))$$

$$\leq \frac{r_0}{6} + \frac{r_0}{6} \quad \text{condition } L < \frac{r_0}{6}$$

$$\Rightarrow B(u(p_1), \frac{r_0}{6}) \cap u(\partial\Sigma) = \emptyset$$

$$\Rightarrow E(u) \geq \text{Area}(u(\Sigma) \cap B(u(p_1), \frac{r_0}{6})) \geq C \left(\frac{r_0}{6}\right)^2 \rightarrow \Leftarrow.$$

Now, for

$$\begin{aligned}
 & \Sigma, \partial\Sigma \xrightarrow{u} \text{large circle with radius } r/3, \text{ boundary } u(\partial\Sigma) \\
 & \text{at } \mathbb{H}^2, \omega \Big|_{B(p, \frac{r}{3})} = \text{exact} \quad v: \bigcup_i \mathbb{D}^2, j \rightarrow (M, \omega, J) \\
 & \text{at } \mathbb{H}^2, v|_{\mathbb{H}^2} = u(\partial\Sigma) \\
 & E(u) = \int_{\Sigma} u^* \omega = \int_{\mathbb{H}^2} v^* \omega = \sum_i \int_{\mathbb{D}^2} v_i^* \omega \leq \sum_i \frac{1}{4\pi} \text{length}_J^2(v_i(\partial\mathbb{D})) \\
 & \quad \uparrow \quad \uparrow \quad \uparrow \\
 & \quad v|_{\mathbb{D}^2} \quad \text{isoperimetric inequality.} \\
 & = \frac{1}{4\pi} \text{length}_J^2(u(\partial\Sigma)).
 \end{aligned}$$

Finally, one can approximate $\partial\Sigma = \emptyset$ case by $\Sigma \setminus$ small disk. \square

Here is another example how to apply the monotonicity lemma.

②

Ex $(\Sigma, j) = (\{z \in \mathbb{C} \mid r < |z| < R\}, j)$ for some r and R . the constant in monotonicity lemma

$$u: (\Sigma, j) \rightarrow (M, \omega, J) \quad J\text{-hol} \quad \text{and} \quad E(u) < C\varepsilon^2$$

where $\varepsilon < \frac{r}{3}$ and $L(u(\textcircled{2})), L(u(\textcircled{2})) < \varepsilon$.

Then

$$\text{diam}(u(\Sigma)) = \sup \{ \text{dist}(u(p), u(p')) \mid p, p' \in \Sigma \} < 5\varepsilon.$$

To prove this statement, we only need to show

$$\text{diam}(u(\Sigma)) \geq 5\varepsilon + L(u(\textcircled{2})), L(u(\textcircled{2})) < \varepsilon \Rightarrow \exists p \in \Sigma \text{ s.t. } \text{dist}(u(p), u(\partial\Sigma)) > \varepsilon.$$

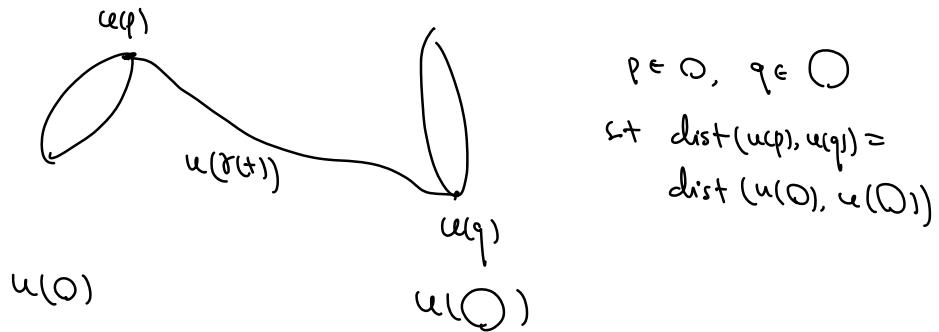
Then $u(\partial\Sigma) \cap B(p, \varepsilon) = \emptyset$ and then monotonicity lemma says

$$E(u) \geq C \varepsilon^2 \rightarrow \leftarrow.$$

Here, we argue in two cases

Case 1 assume $\text{dist}(u(O), u(\mathbb{O})) \leq 2\varepsilon$. (Good Exercise)

Case 2 assume $\text{dist}(u(O), u(\mathbb{O})) > 2\varepsilon$.

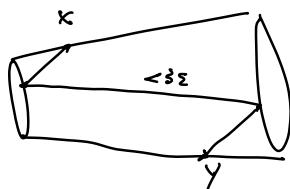


Then $t \mapsto \text{dist}(u(r(t)), u(O))$ is a continuous function that

$$0 \mapsto 0 \quad \text{and} \quad 1 \mapsto \text{dist}(u(O), u(\bar{O})).$$

By IUT, $\exists t_0 \in (0,1)$ s.t. $\text{dist}(r(t_0), u(O)) = \frac{1}{2} \text{dist}(u(O), u(\bar{O})) (> \varepsilon)$
triangle inequality
 $\Rightarrow \text{dist}(r(t_0), u(\bar{O})) \geq \frac{1}{2} \text{dist}(u(O), u(\bar{O})) > \varepsilon.$

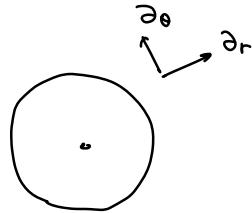
(Hint for case 1: show that $\text{dist}(u(O), u(\bar{O})) \leq 2\varepsilon \Rightarrow \exists u(rp), u(q) \in u(\partial\Sigma)$ have $\text{dist}(u(rp), u(q)) < 3\varepsilon$. Then



$$\begin{aligned} \text{dist}(u(x), u(y)) &= \text{diam}(u(\Sigma)) \geq 5\varepsilon \\ \Rightarrow \text{either } \text{dist}(u(x), u(\partial\Sigma)) &> \varepsilon \\ \text{or } \text{dist}(u(y), u(\partial\Sigma)) &> \varepsilon. \end{aligned}$$

Now, back to the proof of Removal of singularities.

Choose a global polar coordinate (r, θ) on $\mathbb{D} \setminus \{z_0\}$, where $B(0, 1)$



$$j \partial_\theta = -r \partial_r \quad (\Leftrightarrow \partial_r = j(-\frac{1}{r} \partial_\theta))$$

Then

$$\begin{aligned} (u^* \omega)(\partial_r, \partial_\theta) &= \omega(d\bar{u}(\partial_r), d\bar{u}(\partial_\theta)) \\ &= \omega\left(-\frac{1}{r} d\bar{u} \cdot j(\partial_\theta), d\bar{u}(\partial_\theta)\right) \\ &= \frac{1}{r} \omega\left(-J \cdot d\bar{u}(\partial_\theta), d\bar{u}(\partial_\theta)\right) \\ &= \frac{1}{r} \omega\left(\frac{\partial u}{\partial \theta}, J \frac{\partial u}{\partial \theta}\right) = \frac{1}{r} \left|\frac{\partial u}{\partial \theta}\right|_{g_J}^2 \end{aligned}$$

$$\Rightarrow E(u) = \int_{\mathbb{D} \setminus \{z_0\}} u^* \omega = \int_0^1 \int_0^{2\pi} \frac{1}{r} \left|\frac{\partial u}{\partial \theta}\right|_{g_J}^2 d\theta dr$$

To deal with the behavior near 0 , let's introduce some notations,

$$\begin{aligned} D^*(r) &= B(0, r) \setminus \{z_0\} \quad \text{and} \quad A(r, R) = \{z \in \mathbb{C} \mid r \leq |z| \leq R\} \\ D(r) &= B(0, r) \end{aligned}$$

$$\omega(t) = \int_0^t \int_0^{2\pi} \frac{1}{r} \left|\frac{\partial u}{\partial \theta}\right|_{g_J}^2 d\theta dr \quad (= E(u(D(t))))$$

$$\lambda(t) = \text{length}_{g_J}(u(\partial D(t))) \quad (= \int_0^{2\pi} \left|\frac{\partial u}{\partial \theta}\right|_{g_J} d\theta)$$

$$\text{Recall} \quad \frac{d}{dt} \int_{g(t)}^{f(t)} h(r) dr = h(f(t)) \cdot f'(t) - h(g(t)) \cdot g'(t).$$

$$\Rightarrow \omega'(t) = \frac{1}{t} \int_0^{2\pi} \left|\frac{\partial u}{\partial \theta}\right|_{g_J}^2 d\theta$$

$$\Rightarrow \lambda(t)^2 = \left(\int_0^{2\pi} \left| \frac{\partial u}{\partial \theta} \right|_{g_J} d\theta \right)^2 \leq 2\pi \cdot \underbrace{\int_0^{2\pi} \left| \frac{\partial u}{\partial \theta} \right|_{g_J}^2 d\theta}_{t \cdot \alpha'(t)}$$

$$\Rightarrow \lambda(t)^2 \leq 2\pi t \alpha'(t)$$

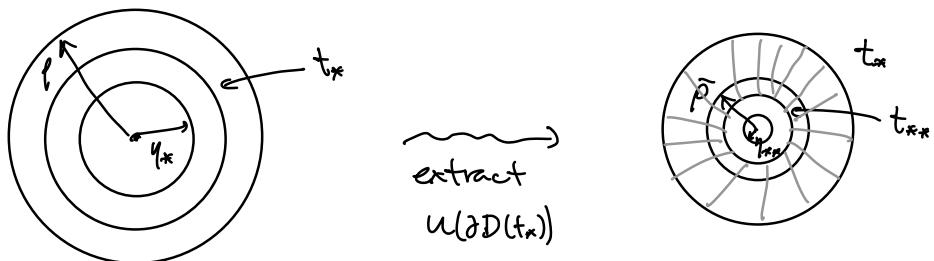
$$\Rightarrow \alpha'(t) \geq \frac{1}{2\pi t} \lambda(t)^2$$

Then for any $0 < \eta < \rho < 1$, we have

$$\begin{aligned} \alpha(\rho) &\geq \alpha(\rho) - \alpha(\eta) \geq \int_{\eta}^{\rho} \frac{1}{2\pi t} \lambda(t)^2 dt \\ &\geq \min_{t \in [\eta, \rho]} \lambda(t)^2 \cdot \frac{1}{2\pi} \int_{\eta}^{\rho} \frac{1}{t} dt \\ &= \min_{t \in [\eta, \rho]} \lambda(t)^2 \cdot \frac{1}{2\pi} \cdot \ln\left(\frac{\rho}{\eta}\right) \end{aligned}$$

Now, $E(u) < \infty$ implies that when $\rho \rightarrow 0$, $\alpha(\rho) \rightarrow 0$. Therefore, for any fixed ρ s.t. $\alpha(\rho) < \Sigma^2$, since $\ln\left(\frac{\rho}{\eta}\right) \rightarrow \infty$ as $\eta \rightarrow 0^+$, we have $\exists \eta_* \in (0, \rho]$ s.t.

$$\Sigma > \min_{t \in [\eta_*, \rho]} \lambda(t) = \lambda(t_*) \text{ for some } t_* \in [\eta_*, \rho].$$



Apply the argument one more time for interval $[\eta_{**}, \tilde{p}^*]$, $\exists t_{**} \in [\eta_{**}, \tilde{p}^*]$

$\{$

$\varepsilon > \min_{t \in [\eta_{**}, \tilde{p}^*]} \lambda(t) = \lambda(t_{**})$

\tilde{p}^* can be taken arbitrarily small (close to 0)

Then by Ex above applied to , we have.

$$\text{diam}(u(A(t_{**}, t_{**}))) < 5\varepsilon.$$

$$\Rightarrow \text{diam}(u(A(\tilde{p}^*, t_{**}))) < 5\varepsilon \text{ for any } \tilde{p}^* \in [\eta_{**}, t_{**}].$$

$$\xrightarrow{\tilde{p}^* \rightarrow 0} \text{diam}(u(D^*(t_{**}))) < 5\varepsilon.$$

For any seq $z_n \in D^*(t_{**})$ where $z_n \rightarrow 0$, $u(z_n)$ is a Cauchy seq

Since M is cpt (so it is complete), \exists a limit pt $u_0 \in M$.

Then define $u(0) := u_0$.

To sum up, we have shown that $\forall \varepsilon > 0$, \exists a NBH of 0, say

$D(t_{**})$ s.t. $\forall u(z) \in D(t_{**})$, we have $\text{dist}(u(z), u_0) < 5\varepsilon$.

$\Rightarrow u$ is continuous at pt 0.

□