

4. Energy revisit

$(M^{2m}, (\omega, \lambda))$ stable Harn str.

$$J((\omega, \lambda)) = \{ \text{a.c.s on } \mathbb{R} \times M \text{ satisfying (A)} \}$$

$$T_\varepsilon = \{ \varphi: \mathbb{R} \rightarrow (-\varepsilon, \varepsilon) \mid \varphi' > 0 \} \quad \text{for any fixed } \varepsilon > 0.$$

↑ test function

in fact, it should be $\dot{\Sigma} = \Sigma \setminus \{t=0\}$

Then for any J -hol curve $u: (\Sigma, j) \rightarrow (\mathbb{R} \times M, J)$, one can define its energy

$$E_\varepsilon(u) := \sup_{\varphi \in T_\varepsilon} \int_{\Sigma} u^* \omega_\varphi \quad \leftarrow \text{so } E_\varepsilon(u) \text{ is independent of the test function.}$$

If $J \in J((\omega, \lambda))$, then $E_\varepsilon(u) \geq 0$ and $E_\varepsilon(u) = 0$ iff u is constant.

Rank Def of $E_\varepsilon(u)$ is good since "trivial" cylinders admits small energy (cf. Section 1)

Question What's the relation between $E_\varepsilon(u)$ and $E_\delta(u)$?

In general, let's consider

$$T_{(a,b)} := \{ \varphi: \mathbb{R} \rightarrow (a,b) \subset (-\varepsilon, \varepsilon) \mid \varphi' > 0 \}$$

$$\text{and } E_{(a,b)}(u) := \sup_{\varphi \in T_{(a,b)}} \int_{\Sigma} u^* \omega_\varphi$$

Prop. $\exists C \subset (a, b \varepsilon)$, independent of u , s.t. $C E_\varepsilon(u) \leq E_{(a,b)}(u) \leq E_\varepsilon(u)$.

pf. The inequality $E_{(a,b)}(u) \leq E_\varepsilon(u)$ is trivial b/c $T_{(a,b)} \subset T_\varepsilon$.

Start from the tamed condition $\omega(v, Jv) > 0$ for any $v \in \ker(\lambda)$

This extends to $T(R \times M)$ b/c $\omega(\partial_t, \cdot) = \omega(\mathbf{f}, \cdot) = 0$.

$$\Rightarrow \exists c > 1 \text{ s.t. } \min \left\{ c^{-1}, 1 - \frac{1}{c} \right\} \omega(x, Jx) > |k d\lambda(x, Jx)| \quad \forall x \in T(R \times M) \quad \begin{matrix} \text{b/c tamed is an open condition} \\ \leftarrow \end{matrix}$$

$$k \in (-\varepsilon, \varepsilon)$$

(Here, we assume ε sufficiently small)

$$\Rightarrow \frac{1}{c} (\omega + k d\lambda)(x, Jx) \leq \omega(x, Jx) \leq c (\omega + k d\lambda)(x, Jx)$$

Suppose $\varphi \in T_\varepsilon$, for any constant $f \in (a, b-a]$, define

$$\tilde{\varphi}(r) := \frac{f}{2\varepsilon} \varphi(r) + \frac{a+b}{2} \in (a, b)$$

$$\frac{f}{2\varepsilon} \cdot \varepsilon + \frac{a+b}{2} \leq b$$

$$\frac{f}{2\varepsilon}(-\varepsilon) + \frac{a+b}{2} \geq a$$

so $\tilde{\varphi} \in T_{(a,b)}$. Then

$$\begin{aligned} \int_{\Sigma} u^* \omega \varphi &= \int_{\Sigma} u^* (\omega + \varphi(r) d\lambda + \varphi'(r) dr \wedge \lambda) \\ &= \int_{\Sigma} u^* (\omega + \varphi(r) d\lambda) + \int_{\Sigma} \varphi'(r) dr \wedge \lambda \\ &\leq c \int_{\Sigma} u^* (\omega + \tilde{\varphi}(r) d\lambda) + \frac{2c}{\varepsilon} \int_{\Sigma} \tilde{\varphi}'(r) dr \wedge \lambda \end{aligned}$$

comparison between
 c (above) and $\frac{2c}{\varepsilon}$
 so the derived
 constant in conclusion
 is $\min\left\{\frac{1}{c}, \frac{2c}{\varepsilon}\right\}$

If $c^2 \geq \frac{2\varepsilon}{b-a}$, then choose $f = \frac{2\varepsilon}{c^2} \in (a, b-a)$, then

$$\int_{\Sigma} u^* \omega \varphi \leq c \int_{\Sigma} u^* \omega \tilde{\varphi} \leq c E_{(a,b)}(u)$$

$$\Rightarrow \frac{1}{c^2} E_{\varepsilon}(u) \leq E_{(a,b)}(u)$$

If $c^2 < \frac{2\varepsilon}{b-a}$, then choose $f = b-a$, then

$$\int_{\Sigma} u^* \omega \varphi \leq \frac{2\varepsilon}{b-a} \int_{\Sigma} u^* \omega \tilde{\varphi} \leq \frac{2\varepsilon}{b-a} E_{(a,b)}(u) \Rightarrow \text{conclusion } \square$$

Remark Prop above shows that whether $E_\varepsilon(u)$ is bounded is independent of Σ as long as it is sufficiently small.

Question. How to generalize the energy $E_\varepsilon(u)$ to symplectic cobordism

setting (+ completion) ?



Fix $\psi \in T_\varepsilon^*$ and $r_0 \geq 0$, denote

$$\begin{aligned} J & (w_\psi, r_0, (w_+, \lambda_+), (w_-, \lambda_-)) \\ &= \{ J \text{ a.c.s on } \hat{W} \mid \\ & J|_{[r_0, \infty) \times M_+} \in J((w_+, \lambda_+)) \\ & J|_{(-\infty, -r_0] \times M_-} \in J((w_-, \lambda_-)) \\ & J|_{([-r_0, 0] \times M_-) \cup W \cup_{w_\psi} ([0, r_0] \times M_+)} \text{ is } w_\psi\text{-compatible} \end{aligned}$$

Then define

$$E_{\psi, \varepsilon, r_0}(u) := \sup_{\psi \in T_{\psi, \varepsilon, r_0}} \int_{\Sigma} u^* \omega_\psi$$

b/c by the same argument as above.
if $(w_\pm)_\varepsilon$ are stable then
J chosen here is w_ψ -trivial
for any $\psi \in T_{\psi, \varepsilon, r_0}$

where $T_{\psi, \varepsilon, r_0} := \{ \psi \in T_\varepsilon \mid \psi \equiv \psi \text{ on } [-r_0, r_0] \}$.

5. Removal of singularities

In practical case, the domain of our J -hwl map $(\Sigma, j) \xrightarrow{u} (W, w_\psi)$ will be punctured Riem surface $\dot{\Sigma} = \Sigma \setminus \uparrow$
a finite set of pts on Σ .

Near each pt $p \in \Gamma$, locally one can view the NBH in three different ways:

(i) $\mathbb{D} \setminus \{0\}$

(ii) $Z_+ := [0, \infty) \times S^1 \quad (\xrightarrow{\text{bihol}} \mathbb{D} \setminus \{0\} \text{ by } (s, t) \mapsto e^{-2\pi(s+it)})$

(iii) $Z_- := (-\infty, 0] \times S^1 \quad (\xrightarrow{\text{bihol}} \mathbb{D} \setminus \{0\} \text{ by } (s, t) \mapsto e^{2\pi(s+it)})$

Though topologically (i) - (iii) are the same, when energy is involved, (i) is fundamentally different from (ii) and (iii).

Then Given (X, ω, J) when J is ω -tamed, $u: (\mathbb{D} \setminus \{0\}, j) \rightarrow (X, J)$ a $\overset{\text{smooth}}{\text{J-hol}}$ curve that $\int_{(\mathbb{D} \setminus \{0\})} u^* \omega < \infty$. Then u admits a continuous extension to \mathbb{D} .

\uparrow
this is called removal of singularity (at $0 \in \mathbb{D}$).

Rank By adding $\overset{\text{further}}{\text{regularity}}$ (when u is continuous on \mathbb{D} and smooth on $\mathbb{D} \setminus \{0\}$) one can prove that u extends to 0 in a smooth way). cf. Lemma 9.7 in [Wen]
cf. Last Then in SFT-3.

Ex consider $u: \mathbb{D} \setminus \{0\} \rightarrow (\mathbb{C}, \sqrt{-1}) \quad u(z) = \frac{1}{z}$. Then obviously it can not be extended to $\{0\} \in \mathbb{D}$. Also, note that

$$\int_{(\mathbb{D} \setminus \{0\})} u^* \omega_{std} = \int_0^{2\pi} \int_0^1 \left| \frac{\partial u}{\partial \rho} \right|_{g_J}^2 \rho d\rho d\theta$$

$$\frac{\partial u}{\partial \rho} = \frac{\partial \left(\frac{1}{\rho} e^{i\theta} \right)}{\partial \rho} = -\frac{1}{\rho^2} e^{i\theta} \xrightarrow{\text{holomorphic}} \int_0^{2\pi} \int_0^1 \frac{1}{\rho^2} d\rho d\theta = \pi \cdot \left[-\frac{1}{\rho} \right]_0^1 = \pi \left(-1 + \frac{1}{0^+} \right) = +\infty$$

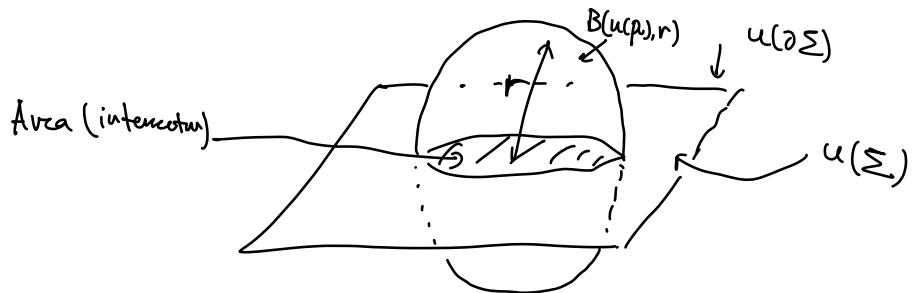
The above says that under the "local energy bounded" condition, puncture pts can be neglected.

The proof of this relies on the following well-known result (in minimal surface theory).

FACT (monotonicity lemma) Given cpt (X, ω, J) where J is ω -tamed, and $r_0 := \text{inj}_{M, g_J} (>0)$ the injective radius, a ω -un-constant J -hol curve

$u: (\Sigma, j) \rightarrow (X, J)$, suppose $p_0 \in \Sigma$, $0 < r < \frac{r_0}{3}$, and
 connected
 sandwich b/d $u(\partial \Sigma) \cap B(u(p_0), r) = \emptyset$
 \leftarrow ball centered at $u(p_0)$ with radius r

Then $\text{Area}(u(\Sigma) \cap B(u(p_0), r)) \geq C r^2$ for a constant C ind of u .

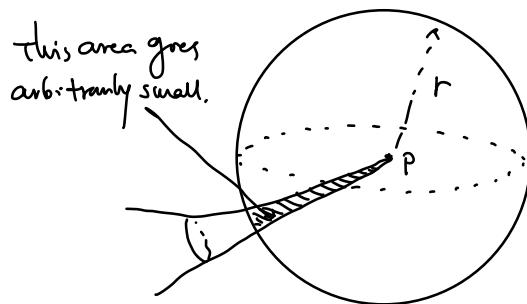


Ex $(M, \omega, J) = (\mathbb{R}^{2n}, \omega_{std}, J = J_0)$ (then $r_0 = \infty$). One can check that C in monotonicity lemma above $= \pi$.

\Rightarrow any J_0 -hol curve in $(\mathbb{R}^{2n}, \omega_{std}, J_0)$ passing through 0 in $B(0, r)$ must have area at least πr^2
 with b/d not inside $B(0, r)$

Rank • Monotonicity lemma says a J -hol curve must use up at least a certain amount of area (\simeq energy) for every ball whose center it passes through.

- Here is an example (not J -hol, hence) that violates the conclusion of monotonicity lemma.



The following "quantum type" result shows how one applies this monotonicity lemma.

Prof $\exists t_0 > 0$ s.t. $u: (\Sigma, j) \xrightarrow{\text{cpt}} (M, \omega, J)$ J -hol and Σ is cpt.
 If $E(u) < t_0$, then $E(u) \leq \frac{1}{4c} \text{length}_{g_J}^2(u(\partial\Sigma))$. *this c is the one in monotonicity lemma*

In particular, if $\partial\Sigma = \emptyset$, then any non-constant J -hol map must have energy at least t_0 . *in other words, energy does not change continuously.*

If the second conclusion is trivial since $E(u) = 0 \Leftrightarrow u$ is constant.

Choose $t_0 = \min \left\{ \frac{1}{4c}, c \right\} \cdot \left(\frac{r_0}{6} \right)^2$ and denote $L = \text{length}_{g_J}(u(\partial\Sigma))$

- If $L \geq \frac{r_0}{6}$, then $E(u) < t_0$ implies that

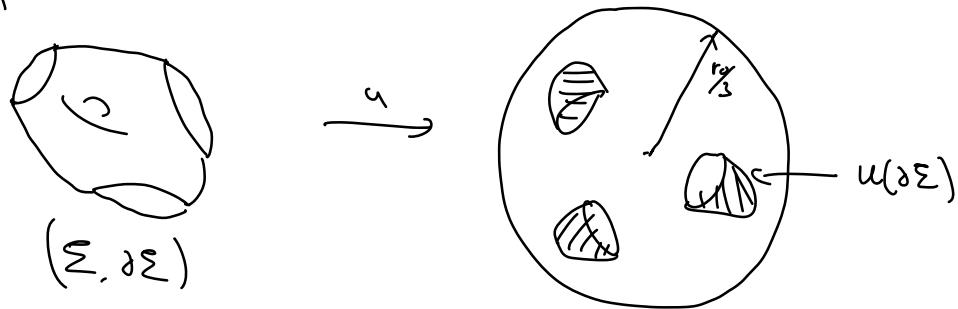
$$E(u) \leq \frac{1}{4c} \left(\frac{r_0}{6} \right)^2 = \frac{1}{4c} \cdot L^2 = \frac{1}{4c} \text{length}_{g_J}^2(u(\partial\Sigma)).$$

$E(u)$ implies that
- Consider $L < \frac{r_0}{6}$. We claim, $\exists B(p, \frac{r_0}{3}) \subset M$, s.t.

$$B(p, \frac{r_0}{3}) \supset u(\Sigma) \quad (\star\star)$$

Assume this (the proof is by Monotonicity lemma and will be presented
NEXT TIME), then we can finish the proof of this prop.

Now, for



$$\frac{1}{c} \omega \Big|_{B(p, \frac{r_0}{3})} = \text{exact} \quad \text{s.t. } v \Big|_{\frac{1}{4}c\omega} = u(\partial\Sigma)$$

$$E(u) = \int_{\Sigma} u^* \omega \stackrel{\downarrow}{=} \int_{\frac{1}{4}c\omega} v^* \omega = \sum_i \int_{\omega_i} v_i^* \omega \stackrel{\substack{\uparrow \\ v \Big|_{\omega_i}}}{\leq} \sum_i \frac{1}{4c} \text{length}_{\omega_i}^2(v_i(\partial\omega_i)) \stackrel{\substack{\uparrow \\ \text{isoperimetric inequality,}}}{=} \frac{1}{4c} \text{length}_{\omega}^2(u(\partial\Sigma)).$$

Finally, one can approximate $\partial\Sigma = \emptyset$ case by $\Sigma \setminus$ small disk.

modulo
the proof ($\star\star$) above. \square