

by a Ham fcn $H: \Sigma_{\mathbb{R}} \times X \rightarrow \mathbb{R}$ ($\Leftarrow \varphi_H' = p$), then \exists a global
trivialization (as a surjective)

$$\begin{aligned} \mathbb{I}_H: \quad X \times S^1(\mathbb{R}) &\longrightarrow Y_H \\ (x, \theta) &\mapsto [(\varphi_H^\theta)_{(x)}, \theta] \end{aligned}$$

Then $\mathbb{I}_H^* \lambda = \mathbb{I}_H^*(\pi^* d\theta) = (\pi \cdot \mathbb{I}_H)^* d\theta = \pi^* d\theta$

$$\mathbb{I}_H^* \omega_H = \mathbb{I}_H^*(\pi_x^* \omega) = (\pi_x \cdot \mathbb{I}_H)^* \omega = \omega - dH \wedge d\theta.$$

$\Rightarrow (\mathbb{I}_H^* \omega_H, \mathbb{I}_H^* \lambda)$ is a framed Ham str on $S^1(\mathbb{R}) \times X$.

One can also check that the Reeb v.f. of $(\mathbb{I}_H^* \omega_H, \mathbb{I}_H^* \lambda)$ is

$$(\mathbb{I}_H^{-1})_*(R) = \frac{\partial}{\partial \theta} + X_H$$

$$\begin{aligned} (\text{b/c } (\mathbb{I}_H^* \omega_H)((\mathbb{I}_H^{-1})_*(R), -)) &= (\omega - dH \wedge d\theta) \left(\frac{\partial}{\partial \theta} + X_H, - \right) \\ &= \omega(X_H, -) + dH(-) - dH(X_H) \overset{\circ}{d\theta} = 0 \end{aligned}$$

\Rightarrow flow of $(\mathbb{I}_H^{-1})_* R$ is + Ham fcn of H

\Rightarrow $\begin{matrix} \text{closed "Reeb" orbits. on} \\ \text{surfaces.} \end{matrix} \simeq \begin{matrix} \text{closed Hamiltonian} \\ \text{orbits after} \\ \text{integer time period.} \end{matrix}$ In Ham fcn homology theory,
one usually considers 1-periodic
closed Ham orbit.

In this way, one can consider "all" Ham periodic orbits in a
uniform framework.

Def A framing λ in (ω, λ) on M^{n-1} is called stable if

$$d\lambda(R_{(\omega, \lambda)}, \cdot) \equiv 0 \quad (\#)$$

where $R_{(\omega, \lambda)}$ is the Reeb v.f. of (ω, λ) .

Note that since $\omega(R, \cdot) \equiv 0$, we know $(\#) \iff d\lambda = f \cdot \omega$ for some function $f: M \rightarrow \mathbb{R}$. Since f could be zero, so $(\#) \iff \ker(\omega) \subset \ker(d\lambda)$.

Ex Contact mfld $(\omega, \lambda) = (d\alpha, \alpha) \Rightarrow$ stable

mapping torus $(\omega_\varphi, \lambda) \Rightarrow$ stable

Rmk Recall that the flow of $R_{(\omega, \lambda)}$ preserves ω (for (ω, λ))

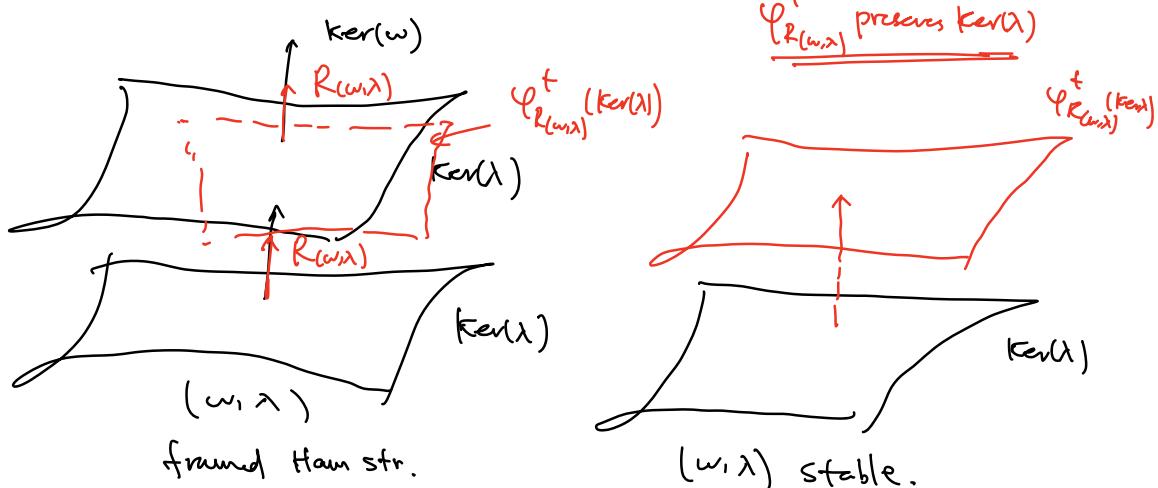
Here, for stable Ham str, we have

$$L_{R_{(\omega, \lambda)}} \lambda = d \underbrace{\iota_{R_{(\omega, \lambda)}}}_{\equiv 1} \lambda + \iota_{R_{(\omega, \lambda)}} d\lambda = 0 + 0 = 0$$

\Rightarrow the flow of $R_{(\omega, \lambda)}$ also preserves λ .

↓
This serves as one benefit of considering stable (ω, λ) .

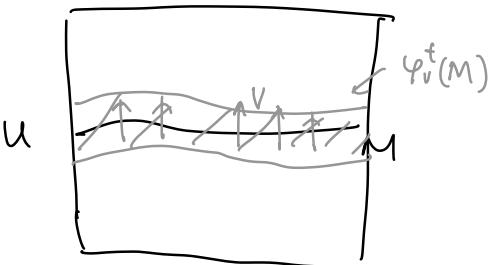
Comparison:



3. Symplectic cobordism

Exe. (X^{2n}, ω) sympl mfd, $M^{2n-1} \subset X^{2n}$ ^{hypersurface}^{cpt}. Then TFAE,

- (1) $\omega|_M$ admits a framing λ s.t. $(\omega|_M, \lambda)$ is stable on M .
 $\lambda := \omega(v, -)|_M$
- (2) \exists a NBH U of M in X that admits a v.f. $V \pitchfork M$, its flow φ_V^t satisfies $\varphi_V^t(M) \xrightarrow{\text{diffeo}} M$ for $t \in (-\varepsilon, \varepsilon)$ and some $\varepsilon > 0$, and $(\varphi_V^t)_* : \ker(\omega|_M) \rightarrow$



In other words, NBH U of M in X is foliated by copies of M (up to diffeo) in an "orthogonal" way.

\Rightarrow via φ_V^t , one can identify this NBH U of M with $(-\varepsilon, \varepsilon) \times M$

$$\begin{aligned} (-\varepsilon, \varepsilon) \times M &\xrightarrow{\cong} U \\ (r, \infty) &\rightarrow \varphi_V^r(x) \quad \text{where } \frac{\partial}{\partial r} \cong V \end{aligned}$$

• Then study the closed 2-form $\mathbb{I}_V^* \omega$ near M .

Observe that along $\partial \mathbb{I}_V^* M$, we have

$$(\mathbb{I}_V^* \omega)(a, b) = \omega|_M((\varphi_V^r)_*(a), (\varphi_V^r)_*(b)) = \omega|_M(a, b)$$

$$(\mathbb{I}_V^* \omega)(\partial r, -) = \omega|_M(V, -) =: \lambda \leftarrow \text{fixed once } \omega, V \text{ are fixed.}$$

$$\Rightarrow \mathbb{I}_V^* \omega = \omega|_M + dr \wedge \lambda \text{ on } \{0\} \times M$$

$$\Rightarrow \text{consider } \omega|_M + d(r\lambda) \text{ in a NBH of } M.$$

When $|t|$ is sufficiently small, it is also a symplectic str.

this should be understood
as the pullback $\mathbb{I}_M^* \omega|_M$
for projection $\mathbb{I}_M : (-\varepsilon, \varepsilon) \times M \rightarrow M$

If $|t|$ is sufficiently small - since here is an extra term $r d\lambda$,
where $d\lambda = f \omega$ (by the stability of λ); therefore
if $|t|$ is sufficiently small, this new 2-form serves as a small perturbation
of $\omega + dr \wedge \lambda$, which is also non-degenerate,
implying a symplectic structure.

Therefore, shrink ε if nec. then we have a symplectic mfd

$$((- \varepsilon, \varepsilon) \times M, \omega|_{TM} + d(r\lambda))$$

cut out from $M \hookrightarrow (X, \omega)$. Moreover, M admits a stable framed
Ham str (ω, λ) . \parallel

- Now, let's forget about the ambient sympl mfd (X, ω) , and directly consider $(M, (\omega, \lambda))$ where (ω, λ) is stable. Then $\exists \varepsilon > 0$ s.t.

$$((- \varepsilon, \varepsilon) \times M, \omega + d(r\lambda)) \quad \begin{matrix} \text{for this construction} \\ \text{"stable" is not needed.} \end{matrix}$$

is a symplectic mfd.

Rank. Recall that if M is a contact mfd, then $\mathbb{R} \times M$ supports a symplectic str called the symplectization of M .

Fix a smooth map $\varphi: \mathbb{R} \rightarrow (-\varepsilon, \varepsilon)$ s.t. $\varphi' > 0$. It induces a map

$$\mathbb{R} \times M \xrightarrow{\mathbb{I}_\varphi} ((-\varepsilon, \varepsilon) \times M, (r, x) \mapsto (\varphi(r), x)).$$

Then $\mathbb{I}_\varphi^* (\omega + d(r\lambda)) = \omega + d(\varphi(r)\lambda)$.

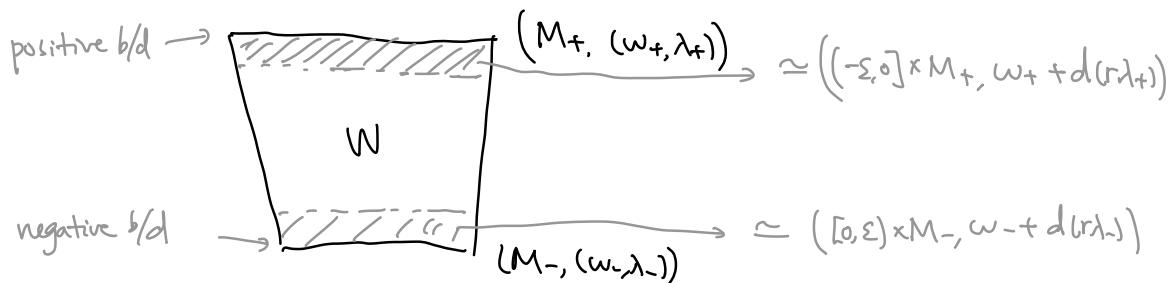
the role of being stable
will be explained later.

\Rightarrow Prop Given a $(M, (\omega, \lambda))$ where (ω, λ) is stable, then one can construct a sympl mfd (called the symplectization of $(M, (\omega, \lambda))$) by $((\mathbb{R} \times M, \omega + d(\varphi(r)\lambda))$

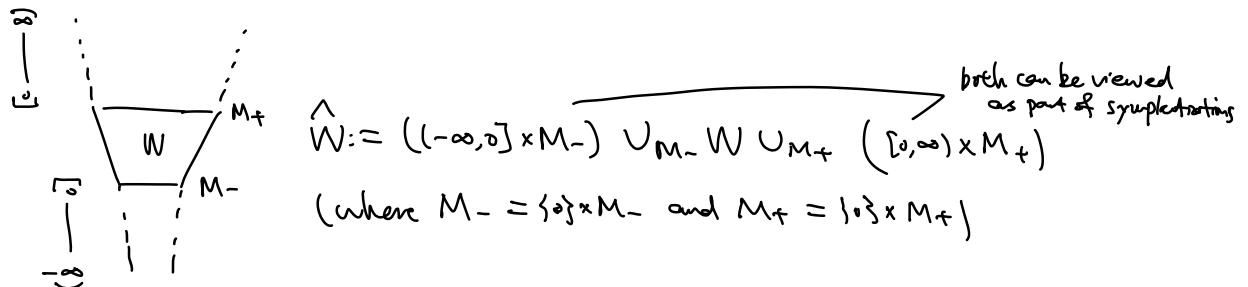
Note that there is no canonical symplectization in this case.

- Similarly in the contact geometry setting, one can generalize symplectization to symplectic cobordisms (Def 6.12^{Def 6.17} in [Weu]).

Def Given $(M_{\pm}^{\mathbb{R}^n}, (\omega_{\pm}, \lambda_{\pm}))$, a symplectic cobordism with stable boundary from $(M_{-}, (\omega_{-}, \lambda_{-}))$ to $(M_{+}, (\omega_{+}, \lambda_{+}))$ is a cpt symplectic $2n$ -dim mfld W s.t. $\partial W \xrightarrow[\text{differs}]{\sim} M_{-} \amalg M_{+}$ and $\omega|_{\partial W} \simeq \omega_{\pm}$ on M_{\pm} respectively.



Then one can complete W :



Equip \hat{W} the following symplectic structure:

$$\omega_{\varphi} := \begin{cases} \omega_{+} + d(\varphi(r)\lambda_{+}) & \text{on } [0, \infty) \times M_{+} \\ \omega & \text{on } W \\ \omega_{-} + d(\varphi(r)\lambda_{-}) & \text{on } (-\infty, 0] \times M_{-} \end{cases}$$

when $\varphi: \mathbb{R} \rightarrow (-\epsilon, \epsilon)$ s.t. $\varphi' > 0$ and $\varphi(r) \simeq r$ near 0

ϵ so that one can glue near M_{\pm} in a sympl way.

- Given (ω, λ) where $R_{(\omega, \lambda)}$ is its associated Reeb v.f., consider an a.c.s J on $\mathbb{R} \times M$ satisfying $\text{then always exists such } J$

- (i) J is \mathbb{R} -translation invariant.
- (ii) $J \partial_r = R_{(\omega, \lambda)}$ and $J R_{(\omega, \lambda)} = -\partial_r$.
- (iii) $J: \ker \lambda \hookrightarrow \mathbb{R}$ and $J|_{\ker \lambda}$ is compatible with $\omega|_{\ker \lambda}$.

(*)

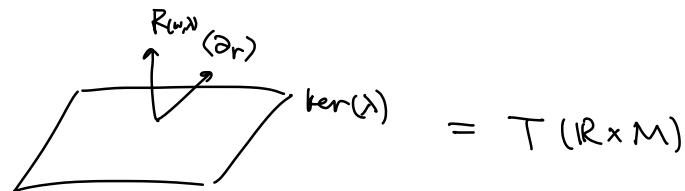
cf. a.c.s
on symplectic
in contact
geo. setting.

We call J is tamed by (ω, λ) if $\exists \Sigma > 0$ s.t. for every $\varphi: \mathbb{R} \rightarrow (-\Sigma, \Sigma)$ with $\varphi' > 0$, we have J is tamed by $\omega + d(\varphi(r)\lambda)$ on $\mathbb{R} \times M$.

Prof (Prop 6.19 in [Wein]) Given a framed Ham str on M^{2n-1} , we have

J satisfying (*) is tamed by $(\omega, \lambda) \iff \lambda$ is a stable.

If . " \Leftarrow "



$$\text{and } \omega_\varphi = \omega + d(\varphi(r)\lambda) = \omega + \varphi(r)d\lambda + \varphi'(r)d\lambda \wedge \lambda$$

Then

$$\begin{aligned} \omega_\varphi (R_{(\omega, \lambda)}, JR_{(\omega, \lambda)}) &= \omega_\varphi (R_{(\omega, \lambda)}, -\partial_r) \\ &\stackrel{(*)}{=} \varphi'(r)(d\lambda \wedge \lambda)(\partial_r, R_{(\omega, \lambda)}) = \varphi'(r)\lambda (R_{(\omega, \lambda)}) = \varphi'(r) > 0 \end{aligned}$$

The same works for ∂_r

(*) is the step using
 λ is stable b/c for
the projection $T(\ker \lambda): \mathbb{R} \times M \rightarrow \ker \lambda$
we may have $T(\ker \lambda)(\partial_r) \neq 0$.

$d\lambda(v, Jv)$

$$\begin{aligned} \omega_\varphi (v, Jv) &= \underbrace{\omega|_{\ker(\lambda)}(v, J|_{\ker(\lambda)}v)}_{\text{by corollary of } J \text{ in } (*)} + \varphi(r)d\lambda(v, v) > 0 \\ v \in \ker(\lambda) & \uparrow \\ & \text{if } \Sigma > 0 \text{ and sufficiently small,} \\ & \varphi(r)d\lambda(v, v) \text{ is small} \end{aligned}$$

" \Rightarrow " Suppose J satisfies (a) but λ is not stable. Then $\exists x \in M$ and $\stackrel{v \in \text{Ker}(\lambda)}{v} \in \text{Ker}(\lambda)(x)$ s.t. $d\lambda(R_{(\omega, \lambda)}, v) > 0$. At $(0, x) \in \mathbb{R} \times M$, for constant $c > 0$, we have

$$\begin{aligned}
 \omega_\varphi(R_{(\omega, \lambda)} + cJv, J(R_{(\omega, \lambda)} + cJv)) &= \omega_\varphi(R_{(\omega, \lambda)} + cJv, -\partial_r - cv) \\
 &= \omega_\varphi(\partial_r, R_{(\omega, \lambda)}) - c\omega_\varphi(R_{(\omega, \lambda)}, v) \\
 &\quad - c\omega_\varphi(Jv, \partial_r) + c^2\omega_\varphi(v, Jv) \\
 &= \varphi'(0) - c\left(\omega + \varphi'(0)d\lambda + \varphi'(0)(d\lambda \wedge \lambda)\right)(R_{(\omega, \lambda)}, v) \\
 &\quad - c(\dots - \dots) (Jv, \partial_r) \\
 &\quad + c^2(\dots - \dots) (v, Jv)
 \end{aligned}$$

better to change this \epsilon by δ , in order not to mess up with the range (ϵ , δ) in the range of the reparametrization function φ .

choose $\varphi'(0) = \Sigma$, then $RHS = \varphi'(0) - c \cdot \Sigma \cdot r + c^2(\alpha + \Sigma \beta)$

Then choose $c = \Sigma \frac{r}{2\alpha}$

$$\begin{aligned}
 \Rightarrow -c \cdot \Sigma \cdot r + c^2(\alpha + \Sigma \beta) &= -\Sigma^2 \frac{r^2}{2\alpha} + \Sigma^2 \frac{r^2}{4\alpha} \cdot \alpha + o(\Sigma^2) \\
 &= -\Sigma^2 \left(\frac{r^2}{2\alpha} - \frac{r^2}{4\alpha} \right) + o(\Sigma^2) \\
 &= -\Sigma^2 \cdot \frac{r^2}{4\alpha} + o(\Sigma^2)
 \end{aligned}$$

So when Σ is sufficiently small, $(\nabla) < 0$. Note that Σ can be chosen arbitrarily small. Then pick $\varphi'(0)$ even small, then $\omega_\varphi(R_{(\omega, \lambda)} + cJv, J(R_{(\omega, \lambda)} + cJv)) < 0$.

4. Energy revisit

$(M^{2n-1}, (\omega, \lambda))$ stable from str.

$$J((\omega, \lambda)) = \{ \text{a.c.s on } \mathbb{R} \times M \text{ satisfying (**)} \}$$

$$T_\varepsilon = \{ \varphi: \mathbb{R} \rightarrow (-\varepsilon, \varepsilon) \mid \varphi'(0) > 0 \} \text{ for any fixed } \varepsilon > 0.$$

test function

in fact, it should be $\dot{\Sigma} = \Sigma \setminus \{ \text{pts} \}$

Then for any J -hol curve $u: (\Sigma, j) \rightarrow (\mathbb{R} \times M, J)$, one can define its energy

$$E_\varepsilon(u) := \sup_{\varphi \in T_\varepsilon} \int_{\Sigma} u^* \omega_\varphi \quad \leftarrow \text{so } E(u) \text{ is independent of the test function.}$$

If $J \in J((\omega, \lambda))$, then $E(u) \geq 0$ and $E(u) = 0$ iff u is constant.

Rank Def of $E(u)$ is good since "trivial" cylinder admits small energy (cf. Section 1)

Question What's the relation between $E_\varepsilon(u)$ and $E_\delta(u)$?

In general, let's consider

$$T_{(a,b)} := \{ \varphi: \mathbb{R} \rightarrow (a,b) \subset (-\varepsilon, \varepsilon) \mid \varphi' > 0 \}$$

$$\text{and } E_{(a,b)}(u) := \sup_{\varphi \in T_{(a,b)}} \int_{\Sigma} u^* \omega_\varphi$$

Prop. $\exists C \subset (a, b \varepsilon)$, independent of u , s.t. $C E_\varepsilon(u) \leq E_{(a,b)}(u) \leq E_\varepsilon(u)$.

pf. The inequality $E_{(a,b)}(u) \leq E_\varepsilon(u)$ is trivial b/c $T_{(a,b)} \subset T_\varepsilon$.