

1. Energy

Note that in most studies of J -hol curve $u: (\Sigma, j) \rightarrow (M, J)$, the target space is an almost cpx mfld.

Question If the target is more specified to be a symplectic mfld (M, ω) , what more information can we get?

→ This makes sense b/c $\#$ sympl structure ω on M , \exists a contractible set of almost cpx strgs $J(M, \omega)$, so we get (M, ω, J) .

Moreover, $\omega(\cdot, J\cdot)$ defines a metric, denoted by g_J .

- By Ex 2 in [HW], for any J -hol curve $u: (\Sigma, j) \rightarrow (M, \omega)$, one can define

$$E(u) := \int_{\Sigma} u^* \omega.$$

⇒ when Σ is closed, $E(u) = \langle [\omega], [u(\Sigma)] \rangle$ which means in this case $E(u)$ is a topological quantity.

One uses an ω -compatible a.c.s J to write $E(u)$ more explicitly.

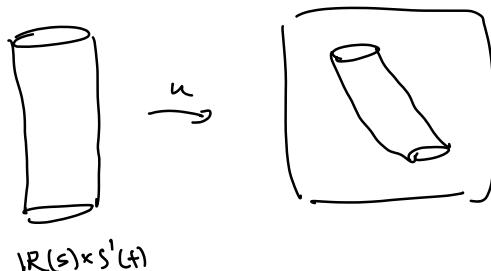
In any local coordinate chart on (Σ, j) choose a basis $\{\partial_s, \partial_t\}$ s.t. $j\partial_s = \partial_t$ and $j\partial_t = -\partial_s$, a metric h on Σ s.t. $\{\partial_s, \partial_t\}$ is an orthonormal basis. Then

$$\begin{aligned} \omega(u(\partial_s), u(\partial_t)) &= \omega((du \cdot j)(\partial_t), du(\partial_t)) \\ &= \omega(-J \cdot du(\partial_t), du(\partial_t)) \\ \text{b/c } u \text{ is } J\text{-hol} \quad &\rightarrow \\ &= \omega\left(\frac{\partial u}{\partial t}, J \frac{\partial u}{\partial t}\right) = \left|\frac{\partial u}{\partial t}\right|^2_{g_J} \end{aligned}$$

$\Rightarrow E(u)$ is always non-negative.

(and $E(u) = \infty$ iff u is constant in each connected component).

- Another case where energy appears - Ham Fiber theory. (M, ω, \bar{J}, H)



u satisfies

$$\frac{\partial u}{\partial s} + \bar{J}_+(u) \left(\frac{\partial u}{\partial t} - X_H(u(t)) \right) = 0 \quad (*)$$

One often defines the energy of u satisfying $(*)$ by

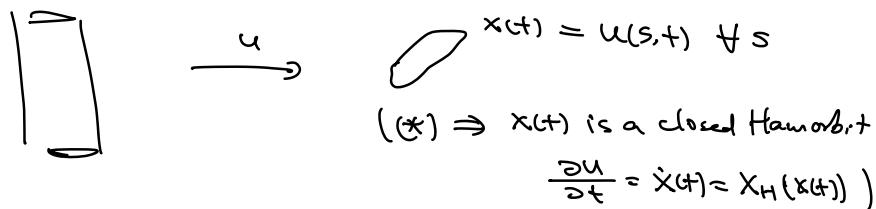
$$\int_{\mathbb{R} \times S^1} u^* \omega + \text{extra term given by } H$$

$$E(u) := \frac{1}{2} \int_0^1 \int_{-\infty}^{\infty} \left(\left| \frac{\partial u}{\partial s} \right|_{g_J}^2 + \left| \frac{\partial u}{\partial t} - X_H(u(t)) \right|_{g_J}^2 \right) ds dt$$

Then $E(u) < \infty \Leftrightarrow \exists$ closed Hamiltonian orbits x^\pm of system (M, ω, \bar{J}, H) s.t. $\lim_{s \rightarrow \pm\infty} u(s, \cdot) = x^\pm(\cdot)$.

We will prove this later in this lecture.

Ex. One extreme case of u is "constant loop" i.e. $\frac{\partial u}{\partial s} = 0$,



In this case, $E(u) = 0$ (b/c $E(u) = \int_0^1 \int_{-\infty}^{\infty} \left| \frac{\partial u}{\partial s} \right|_{g_J}^2 ds dt$).

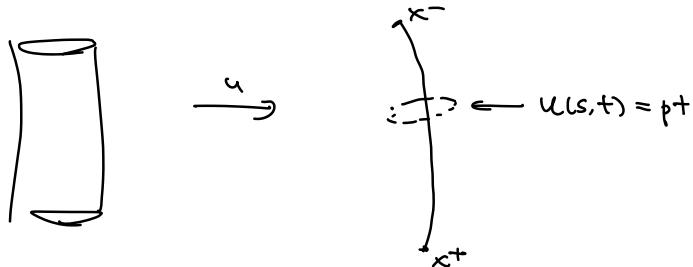
Ex In general, for $E(u) < \infty$, we have

\uparrow This serves as one motivation to define $E(u)$ in the way above.

$$S_{\text{ac}}(x^-) - S_{\text{ac}}(x^+) = E(u) \quad \text{action functional.}$$

Ex The other extreme case of u is a "flowline" i.e. $\nabla \phi \in \mathbb{R}$,

$u(s, t): S^1 \rightarrow M$ is constant.



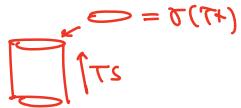
$\Rightarrow u(s, t) \xrightarrow{s \rightarrow \infty}$ closed Hamiltonian orbit but as a fixed pt of the Hamiltonian flow. $\{\phi_H^t\}_{t \in \mathbb{R}}$

In this case, $E(u)$ is not nec. zero.

- For symplectization $(SX = \mathbb{R} \times X, d(e^r \alpha))$ where $(X, \{ \} = \ker \alpha)$ is a contact mfld. We will choose a specific family of a.c.s \mathcal{J} .

Then $u_{\text{trivial}}: \mathbb{R} \times S^1 \rightarrow SX$ defined by

$$u_{\text{trivial}}(s, t) := (Ts, \gamma(Tt))$$



where $\gamma(t)$ is a fixed close Reeb orbit with period T on $(X, \{ \} = \ker \alpha)$.

- One can check that u_{trivial} is a \mathcal{J} -hol curve.

- If one uses the "classical" def of energy

$$\left(\int_{\Sigma} u^* \omega \right) = \int_{\mathbb{R} \times S^1} u_{\text{trivial}}^* d(e^r \alpha) = T^2 \int_{-\infty}^{\infty} e^{Ts} ds = +\infty.$$

\Rightarrow This indicates that this is not a good definition in this setting.

- Correcting by Hofer: consider functions $\varphi: \mathbb{R} \rightarrow (-1, 1)$ s.t.

There are many such funs. $\rightarrow \varphi(0) = 0, \varphi' > 0$ and $\varphi(t) \rightarrow \pm 1$ as $t \rightarrow \pm \infty$.

Then one can check for $d(e^{\varphi(r)}\omega) =: \omega_\varphi$

$$E_\varphi(u) := \int_{\text{Rex}^1} u^*_{\text{trivial}} \omega_\varphi = (e - e^{-1}) T < \infty.$$

Rank One can even consider similar fun $\varphi: \mathbb{R} \rightarrow (-\varepsilon, \varepsilon)$. So that a "trivial cylinder" has arbitrarily small energy.

2. Stable Hamiltonian structure.

Def M^{2n-1} odd-dim'l mfld. A Hamiltonian str on M is a closed 2-form ω s.t. $\underbrace{\omega^n}_{(2n-2)\text{-form on } M^{2n-1}} \neq 0$ (i.e. $\forall p \in M, \exists$ basis element $v_1, \dots, v_{2n-2} \in T_p M$ s.t. $\omega(v_1, \dots, v_{2n-2}) \neq 0$.)

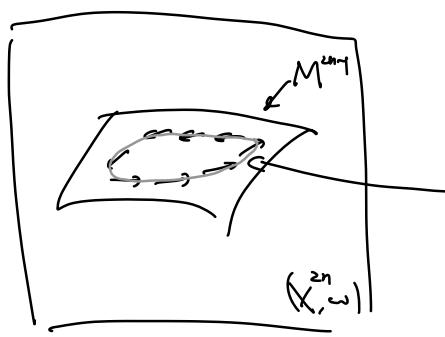
- Note that by dimension reason, ω is always degenerate in the sense that \exists non-trivial ker, denoted by \mathcal{F} (which defines a line field on M).

Def (cont.) A Hamiltonian str ω on M^{2n-1} is called framed by 1-form $\lambda \in \mathcal{I}^1(M)$ if $\lambda(\mathcal{F}) > 0$. A framed Ham str on M^{2n-1} is a pair (ω, λ) .

Note that λ frames ω iff $\lambda \wedge \omega^{n-1} > 0$ (in particular, a volume form on M^{2n-1}) b/c $(\lambda \wedge \omega^{n-1})(\mathcal{F}, v_{2n-1}, \dots, v_{(2n-1)}) = \lambda(\mathcal{F}) \underbrace{\omega^{n-1}(v_{2n-1}, \dots, v_{(2n-1)})}_{>0}$ by reordering the basis elements $\{v_1, \dots, v_{2n-2}\}$ above.

Rank (Ex) By poh, for any fixed Ham str ω , framing λ also exists.

Rmk The origin of "Ham" str on M^{2n-1} . For a sympl mfd (X^{2n}, ω) and a hypersurface $M^{2n-1} \hookrightarrow (X^{2n}, \omega)$, the restriction $i^*\omega$ defines a Ham str b/c M^{2n-1} admits a line field \mathcal{F} as kernel of $i^*\omega$.



Since $i^*\omega$ is degenerate

any integral curve of \mathcal{F} can be identified as a closed Ham orbit of H s.t $M = H^{-1}(c)$, a level set.

In $(M^{2n-1}, (\omega, \lambda))$, one can define Reeb v.f. $R_{(\omega, \lambda)}$ by

$$\lambda(R_{(\omega, \lambda)}) = 1 \text{ and } L_{R_{(\omega, \lambda)}} \omega = 0.$$

$$\Rightarrow T_p M^{2n-1} \simeq \ker(\lambda_p) \oplus R_{(\omega, \lambda)}(p)$$

and

$$\Rightarrow \mathcal{F} = f \cdot R_{(\omega, \lambda)} \quad \text{for some positive fcn } f: M \rightarrow \mathbb{R}_{>0} \\ (\text{b/c } \lambda(\mathcal{F}) = f \cdot \lambda(R_{(\omega, \lambda)}) = f > 0 \text{ by def}).$$

Ex $(M^{2n-1}, \ker \alpha)$ contact mfd

Then $(\omega, \lambda) = (d\alpha, \alpha)$ is a framed Ham str on M^{2n-1} .

Ex For $(M^{2n-1}, (\omega, \lambda))$, we have

$$L_{R_{(\omega, \lambda)}} \omega = d L_{R_{(\omega, \lambda)}} \omega + L_{R_{(\omega, \lambda)}} d\omega = 0$$

So $\Phi_{R(w,\lambda)}^+$ preserves ω .

Studies on closed Reeb orbits (in $(M, (w, \lambda))$ -setting) is similar to those in contact mfld.

\Rightarrow One can ask the same question about the existence of closed Reeb orbits of a framed Ham str. (cf. Weinstein conjecture).

Thm (Hutchings-Taubes, 09) For $(\overset{\text{closed}}{M^3}, (w, \lambda))$, if (w, λ) is stable later then if M is not a \mathbb{T}^2 -bundle over S^1 , then \exists at least one closed Reeb orbit.

Ex $(X, \widetilde{\omega})$ ^{closed}_{symplectic mfld.} Consider fiber bundle $M = X \times S^1 \xrightarrow{\pi} S^1$ ^{trivial}

For $d\theta$ (closed 1-form on S^1), define

$$\lambda = \pi^* d\theta \quad \text{and} \quad \omega := \pi_x^* \widetilde{\omega} \quad \text{where } \pi_x: X \times S^1 \rightarrow X$$

Then ω is closed and $\omega \neq 0$ (b/c one can choose basis $\{e_1, e_2\}$ on X -part).

$$\begin{aligned} \text{Moreover, } \lambda \wedge \omega &= (\pi^* d\theta \wedge \pi_x^* \widetilde{\omega}) \left(\frac{\partial}{\partial \theta}, e_1, e_2 \right) \\ &= d\theta \left(\frac{\partial}{\partial \theta} \right) \widetilde{\omega}(e_1, e_2) > 0. \end{aligned}$$

Note that $R_{(w,\lambda)} = \{0\} \times \frac{\partial}{\partial \theta}$:

$$\lambda(R_{(w,\lambda)}) = (\pi^* d\theta)(\{0\} \times \frac{\partial}{\partial \theta}) = d\theta(\frac{\partial}{\partial \theta}) = 1$$

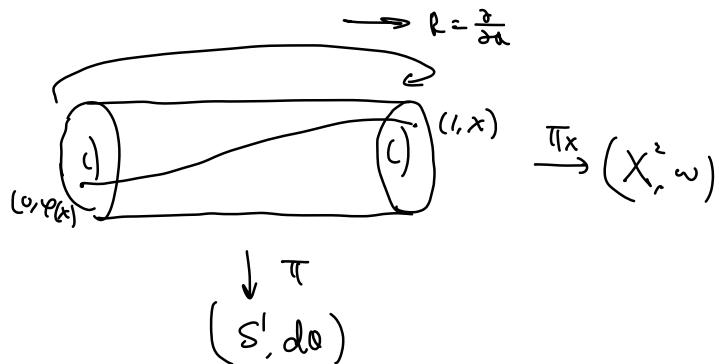
$$\omega(R_{(w,\lambda)}, -) = (\pi_x^* \widetilde{\omega})(\{0\} \times \frac{\partial}{\partial \theta}, -) = 0.$$

This example extends in this way: consider a symplectomorphism

$\varphi: (X^2, \omega) \rightarrow \mathbb{S}$, then

$$Y_\varphi := \frac{X^2 \times [0, 1]}{(1, x) \sim (0, \varphi(x))} \quad (\text{called mapping torus of } \varphi \text{ on } (X^2, \omega))$$

Pictorially,

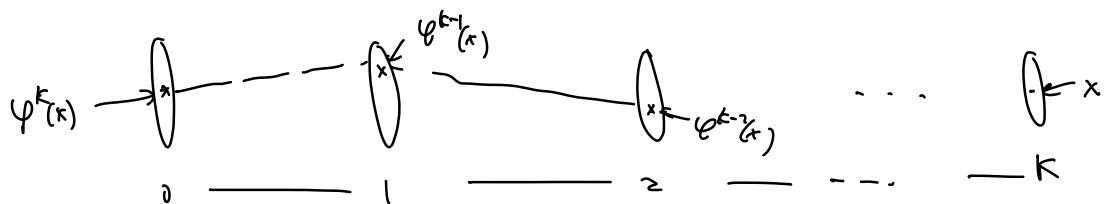


Then again, define $\lambda := \pi^* d\theta$ and $\omega_\varphi := \pi_{X^2}^* \omega$, then $(\omega_\varphi, \lambda)$ is a framed Hamiltonian on Y_φ .

Also, one can check that the Reeb v.f of $(\omega_\varphi, \lambda)$ is $R = \frac{d}{d\theta}$.

$$\Rightarrow \left\{ \begin{array}{l} \text{closed Reeb orbits} \\ \text{of } (\omega_\varphi, \lambda) \text{ on } Y_\varphi \end{array} \right\} \xleftrightarrow{(\cong)} \left\{ \begin{array}{l} \text{fixed pts of } \varphi \\ \text{on } (X^2, \omega) \end{array} \right\}$$

Funck "fixed pts" better to be "periodic pts" (of period K)



(where $\varphi^k(x) = x$)

Funck Learned from Guanheng Chen's arXiv:2111.11891: if φ is generated