

Here is a useful corollary of Cartan's similarity principle.

Recall any holomorphic map $u: D \rightarrow \mathbb{C}^n$ admit local Taylor expansion near pt $0 \in D$.

$$u(z) = a_0 + a_1 z + \frac{a_2}{2!} z^2 + \dots \quad (\text{only involving power of } z)$$

Then if $\lim_{|z| \rightarrow 0} \frac{|u(z)|}{|z|^k} = 0$ for every $k \in \mathbb{N}_{\geq 0}$ then $u \equiv 0$ near 0.

\Rightarrow for two holomorphic fns $u_0, u_1: D \rightarrow \mathbb{C}^n$,

$$\lim_{|z| \rightarrow 0} \frac{|u_0(z) - u_1(z)|}{|z - z_0|^k} = 0 \quad \text{for every } k \in \mathbb{N}_{\geq 0} \Rightarrow u_0 = u_1 \text{ near } z_0.$$

at z_0 , u_0 and u_1 agree "to infinite order".

Prop (unique continuation) $u_0, u_1: (\Sigma, j) \xrightarrow{\text{connected}} (M, J)$ J-hol curve that agree to infinite order at some pt $z_0 \in \Sigma$, then $u_0 \equiv u_1$.

*Another way to express this,
either u is isolated
zero or vanishes
identically.*

Pf $S = \{z \in \Sigma \mid u_0 \equiv u_1 \text{ to infinite order}\}$ is closed obviously and non-empty. $(z_0 \in S)$

Near z_0 , in local chart $\overset{D}{\wedge}$ we have for $i=0, 1$,

$$\frac{\partial u_i}{\partial s} + J(u_i(z)) \frac{\partial u_i}{\partial t} + \underline{0} = 0$$

Then consider $W = u_1 - u_0$, then

$$\frac{\partial W}{\partial s} + J(u_1(z)) \frac{\partial u_1}{\partial t} - J(u_0(z)) \frac{\partial u_0}{\partial t} = 0$$

$$\Leftrightarrow \left(\frac{\partial W}{\partial s} + J(u_1(z)) \frac{\partial W}{\partial t} \right) + \underbrace{\left(J(u_1(z)) - J(u_0(z)) \right)}_{(1)} \frac{\partial u_0}{\partial t} = 0$$

For term (2), rewrite it as follows

$$\begin{aligned}
 (2) &= \int_0^1 \frac{d}{dz} J(u_0(z) + t \cdot w(z)) dz \cdot \frac{\partial u}{\partial t} \\
 &= \int_0^1 \frac{d}{dz} J(u_0(z) + t \cdot w(z)) \cdot \frac{\partial u_0}{\partial t} dz \stackrel{\substack{\text{chain} \\ \text{rule}}}{=} B(z) \cdot w(z) \text{ for some } B(z) \\
 &\quad \text{rescaling of} \\
 &\quad \text{matrix } \frac{d}{dt} J(u_0(z) + t \cdot w(z)) \\
 &\quad \text{by each component in } \frac{\partial u}{\partial t}. \\
 \Rightarrow \frac{\partial w}{\partial s} + J(u_0(z)) \frac{\partial w}{\partial t} + B(z) \cdot w(z) &= 0
 \end{aligned}$$

\leftarrow disk near z_0 .

By Carleman Similarity Principle, $\exists \mathbb{E}: D'(C, D) \rightarrow GL(2n, \mathbb{R})$ s.t.

$\mathbb{E}(z) \cdot w(z)$ is holomorphic on D' and $\mathbb{E} \in W^{1,p}$ for every $p < \infty$.

Substituting
emb per

$$\Rightarrow \exists C, \text{ s.t. } |\mathbb{E}(z)| \leq C \text{ for all } z \in D'.$$

$$\Rightarrow \frac{|\mathbb{E}(z) w(z)|}{|z - z_0|^k} \leq C \cdot \frac{|u_0(z) - u_0(z_0)|}{|z - z_0|^k} \xrightarrow{\text{by our hypothesis.}} 0 \text{ as } z \rightarrow z_0.$$

$\Rightarrow \mathbb{E}(z) w(z) \equiv 0$ in D' and then $w(z) \equiv 0$ ($\text{so } u_0 = u_1$ on D').

$\Rightarrow S$ is also open $\Rightarrow S = \Sigma$.

□

Prop $u: (\Sigma, j) \rightarrow (M, J)$ J-hol. If u is not constant, then crit pts of u is discrete. In particular, if Σ is cpt, then # crit pts is finite.

if Take $\frac{\partial}{\partial s}$ to $\frac{\partial u}{\partial s} + J(u) \frac{\partial u}{\partial t} = 0 \Rightarrow \frac{\partial u}{\partial s} + J(u) \frac{\partial u}{\partial s \text{ at } t} + \frac{\partial J(u)}{\partial s} \frac{\partial u}{\partial t} = 0$

Set $v = \frac{\partial u}{\partial s}$ and we get

$$\frac{\partial v}{\partial s} + J(z) \frac{\partial v}{\partial t} + \frac{\partial J(z)}{\partial s} J(z) \cdot v = 0 \quad \Rightarrow \frac{\partial u}{\partial t} = J(u) v$$

Carleman

Similarity principle
 $v = 0 \Leftrightarrow du = 0$

\exists invertible \mathbb{E} s.t. $\mathbb{E} \cdot v$ is hol. $\Rightarrow v$ has either isolated zero or vanishes identically

\Rightarrow crit pts are isolated (s.o discrete) (b/c u is not constant).

□

2. ^{local} Intersection between J -hol curves.

$$u, v: D \subset \mathbb{C} \rightarrow (M, J) \quad J\text{-hol}$$

Question: How do $im(u)$ and $im(v)$ intersect each other?

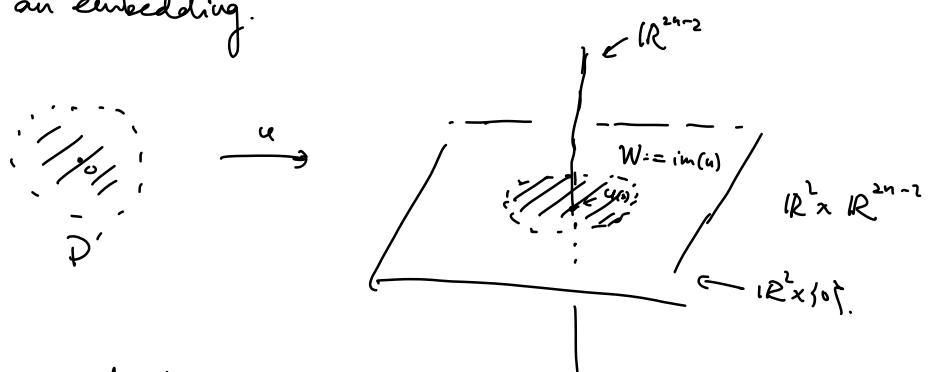
Let's try to make some analysis by ourselves first.

- Assume $du(0) \neq 0$.

Then $d(u(0)): T_0 D \rightarrow T_{u(0)} M$ is injective.

Similarly, for z sufficiently close to 0, $du(z) \neq 0 \Rightarrow du(z)$ is injective.

Therefore, by shrinking the NBH of 0 more if necessary, $u: D' \subset D \rightarrow (M, J)$ is an embedding.



Choose a coordinate near $u(0) \subset W := im(u) \subset R^2 \times \{0\}$, and one can even make R^2 in $R^2 \times \{0\}$ in a complex nature: $J|_{R^2 \times \{0\}}: R^2 \times \{0\} \hookrightarrow$

(b/c u is J -hol)

$$\Rightarrow J = \begin{pmatrix} \text{2x2 on } R^2 \times \{0\} \\ \cdots \\ 0 \end{pmatrix} \quad \begin{matrix} \text{change} \\ \text{basis} \end{matrix} \quad J = \begin{pmatrix} \text{2x2} \\ \cdots \\ 0 \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}$$

$(2n-2) \times (2n-2)$
on $\{0\} \times R^{2n-2}$

Under this coordinate, $u: D \rightarrow (M, J)$ can be locally written as,

$$u = (u_1, 0) \text{ where } u_1: D \rightarrow \mathbb{C}$$

- Consider $\pi: \mathbb{C} \times \mathbb{C}^{n-1} \rightarrow \mathbb{C}^{n-1}$ projection onto the second factor.

Note that $\forall (x, \tilde{x}) \in \mathbb{C} \times \mathbb{C}^{n-1}$, $w \in W$

$$\begin{aligned} \pi(J(w, 0)(x, \tilde{x})) &= \pi \left(\begin{pmatrix} A & 0 \\ 0 & D \end{pmatrix} (w, 0) \begin{pmatrix} x \\ \tilde{x} \end{pmatrix} \right) = \pi(A(w, 0)x, D(w, 0)\tilde{x}) \\ &= D(w, 0)\tilde{x} \end{aligned}$$

Consider another J -hol curve $v: D \rightarrow (M, J)$, under the coordinate above,

$$v = (v_1, \tilde{v}) \text{ where } v_1: D \rightarrow \mathbb{C}, \tilde{v}: D \rightarrow \mathbb{C}^{n-1}.$$

↑
locally

Then from $0 = \frac{\partial v}{\partial s} + J(v(z)) \frac{\partial v}{\partial t}$, we get

$$\begin{aligned} 0 &= \pi_* \left(\left(\frac{\partial v_1}{\partial s} + \frac{\partial \tilde{v}}{\partial s} \right) + J(v_1(z), \tilde{v}(z)) \frac{\partial v}{\partial t} \right) \\ &= \frac{\partial \tilde{v}}{\partial s} + \pi_* \left(J(v_1(z), 0) \frac{\partial v}{\partial t} + \left(J(v_1(z), \tilde{v}(z)) - J(v_1(z), 0) \right) \frac{\partial v}{\partial t} \right) \\ &= \frac{\partial \tilde{v}}{\partial s} + \pi_* \left(J(v_1(z), 0) \left(\frac{\partial v_1}{\partial t} + \frac{\partial \tilde{v}}{\partial t} \right) + \int_0^1 \frac{d}{d\tau} J(v_1(z), \tau \tilde{v}(z)) \frac{\partial v}{\partial t} d\tau \right) \\ &= \frac{\partial \tilde{v}}{\partial s} + D(v_1(z), 0) \frac{\partial \tilde{v}}{\partial t} + B(z) \cdot \tilde{v}(z) \end{aligned}$$

↑
This is an almost
complex str on \mathbb{R}^{2n-2}

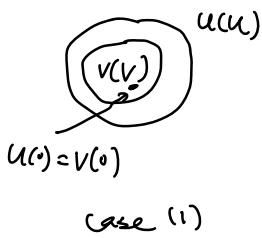
$\sim B: D \rightarrow \text{End}(\mathbb{R}^{2n-2})$.

- Apply the argument of prop (unique continuation), then we get $\exists D' \subset D$ s.t. \tilde{V} is either vanishing at single pt $o \in D'$ or $\equiv 0$ over D' .

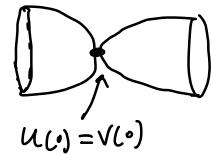
Prop A $u, v: D \subset \mathbb{C} \rightarrow (M, J)$ J -hol and $u(o) = v(o)$, $du(o) \neq 0$.
Then one of the following holds:

(1) \exists NBH $U, V \subset D$ s.t. $v(V) \subset u(U)$. In particular, \exists a holomorphic map $\varphi: V \rightarrow U$ s.t. $v|_V = u \circ \varphi$

(2) \exists NBH $U, V \subset D$ s.t. $u(U) \cap v(V) = \{u(o)\}$



case (1)



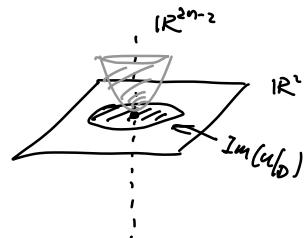
case (2)

Pf. Under the coordinate discussed above,

$$U = (U_1, 0) \text{ and } V = (V_1, \tilde{V})$$

If $\tilde{V}|_{D'}$ vanishes only at o , then

$$U(D) \cap V(D') = \{o\} = \{u(o)\}.$$



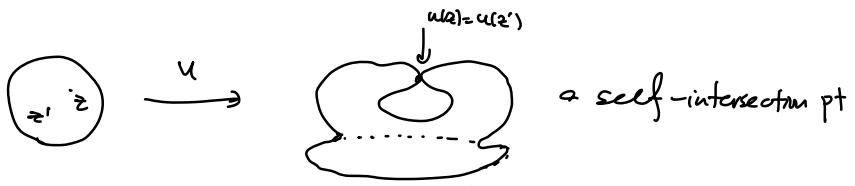
If $\tilde{V}|_{D'}$ vanishes identically on D' , then over D' , $V = (V_1, 0)$.

Now, things are reduced to \geq -dim $|$ situation $u_1, v_1: D' \rightarrow \mathbb{C}$.

Since $u_1(o) = v_1(o)$, $\exists D'' \subset D'$ s.t. $V_1(D'') \subset U_1(D')$ ($\Rightarrow V(D'') \subset U(D')$)

Then the desired holomorphic map $\varphi := u_1^{-1} \circ v_1$ (since u_1 is emb). \square

The intersection could be ^{more} complicated!



For J-hol curve $u: (\mathbb{E}, j) \rightarrow (M, J)$, denote

$$\Delta(u) = \{ z \in \Sigma \mid \begin{array}{l} \exists z' \in \Sigma, D, D' \text{ NBH of } z \neq z' \text{ respectively,} \\ \text{s.t. } u(z) = u(z') \text{ and } u(D) \cap u(D') = u(z) \end{array} \}$$

Prop B' When Σ is cpt, $\Delta(u)$ is finite
(Hand version)

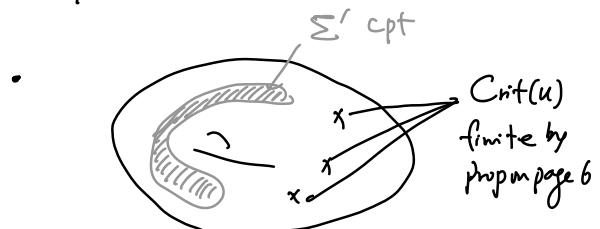
Prop B When Σ is cpt, $\Delta(u)$ is at most countable and if any sequence of pts in $\Delta(u)$ accumulates, the limit must be in $\text{Crit}(u)$.

Rank Prop B \rightarrow Prop B'. one needs to show that pts in $\Delta(u)$ will not accumulate at $\text{Crit}(u)$. This is from a result by Micallef-White.

If of Prop B:

- By def, $\Delta(u)$ is a discrete subset of Σ .

Note that a discrete subset in a cpt space may not be finite!
(A discrete & cpt subset is finite).



For $\forall \Sigma' \subset \Sigma \setminus \text{Crit}(u)$ cpt

We aim to show $\Delta(u) \cap \Sigma'$ is closed ($\Rightarrow \Delta(u) \cap \Sigma'$ is cpt $\Rightarrow \Delta(u) \cap \Sigma'$ is finite)

$$\Sigma \setminus \text{Crit}(u) = \bigcup_{\substack{\text{countably} \\ \text{many}}} \Sigma' \subset \text{cpt} \Rightarrow \Delta(u) = \underbrace{\Delta(u) \cap (\Sigma \setminus \text{Crit}(u))}_{\text{countable}} \cup \underbrace{(\Delta(u) \cap \text{Crit}(u))}_{\text{finite.}} = \text{countable} \times \text{finite.}$$

⇒ desired conclusion

- Verify (4):

Note that $z \in \Sigma'$
automatically since Σ'
is cpt (closed)

Suppose $\{z_m \in \Delta^0 \cap \Sigma\}_m \rightarrow z$, then we need to show $z \in \Delta^0 \cap \Sigma'$ as well.

By def., $\exists \{w_m\} \subset \Sigma$ (corresponding to $\{z_m\}$) s.t. $u(z_m) = u(w_m)$

Suppose $w_m \rightarrow w \in \Sigma$, so by continuity, $u(z) = u(w)$.

KEY: Since $z \notin \text{Crit}(u)$, u is an embedding near z ,
(in particular homeomorphism)

$\Rightarrow z \neq w$ (otherwise z_m, w_m lie in the same NBH of z and then $u(z_m) = u(w_m) \Rightarrow z_m = w_m$, contradicting to the defining property of Δ^0).

Then Prop A applies for $u: \overset{\text{if}}{D} \rightarrow \mathbb{C}^n$ and $v: \overset{\text{if}}{D} \rightarrow \mathbb{C}^n$ s.t.
 $\text{NBH of } z$ $\text{NBH of } w$

either $u(D) \cap v(D) = \{u(z) = u(w)\} \Rightarrow z \in \Delta(u)$

or $v(D') \subset u(D)$ (impossible by defining property of Δ).
for smaller D' if nec.

- The argument above also shows that if $\{z_m\}$ in Δ^0 converges, then the limit has to be in $\text{Crit}(u)$ (cf. KEY above). \square .

Prop A + Prop B' (+ another top lemma) imply the following result:

This result reduces the topology of a J-hol curve, but treated with "singular points"