

Rank $M_{\mathbb{Z}}$ is called the Conley-Zehnder index of A . One can use this to define \mathbb{Z} -index of a closed Reeb orbit (with a trivialization of the contact hyperplane field along γ).

Finally, let's briefly explain a geometric meaning of M^{spec} .

(inspired by a geometric approach to define \mathbb{Z} -index, as an intersection counting elaborated in previous semester).

Notation:

$$D := W^{1,2}(S^1; \mathbb{R}^{2n}), \quad A := L^2(S^1; \mathbb{R}^{2n}), \quad T_{\text{ref}}: \overset{D \rightarrow A}{\text{self-adjoint}} \quad \text{Fredholm index} = 0.$$

$$\text{Fred}^{\text{sym}}_0(D, A; T_{\text{ref}}) = \left\{ T = T_{\text{ref}} + K \mid \begin{array}{l} K \text{ cpt} \\ K \text{ self-adjoint} \\ \text{operator on } A \end{array} \right\}$$

strictly speaking it should be $K \circ \iota: D \rightarrow A$,
where $\iota: D \rightarrow A$ inclusion as a cpt operator

This space is stratified, $k \in \mathbb{N}$, via

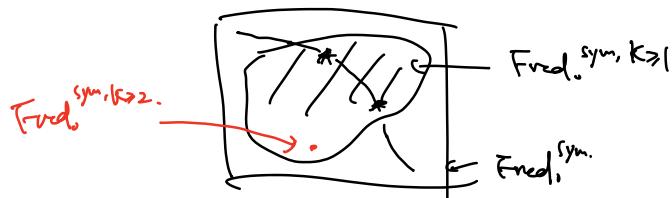
$$\text{Fred}^{\text{sym}, k}_0(D, A; T_{\text{ref}}) = \left\{ T \in \text{Fred}^{\text{sym}}_0 \mid \text{ker}(\text{dim } T) = k \right\}$$

↳ in fact, a
Borel strfd.

Prop 3.27 in [Wen] \Rightarrow

$$\text{codim } \text{Fred}^{\text{sym}, k}_0(D, A; T_{\text{ref}}) = \frac{k(k+1)}{2} \quad (\text{over } \mathbb{R})$$

In particular, for $k \geq 2$, $\text{codim} \geq 3$. Therefore, for a generic path and its



homotopies, they will only intersect $\text{Fred}_0^{\text{sym},1}$ and avoid $\text{Fred}_0^{\text{sym},k \geq 2}$.

\Rightarrow define for $T = \{T(s)\} \subset \text{Fred}_0^{\text{sym}}$ that connects $T_- \in \text{Fred}_0^{\text{sym}}$ and $T_+ \in \text{Fred}_0^{\text{sym}}$ that $s \in [s_{-1}, s_1]$

$M^{\text{spec}}(T) = \text{signed counting of paths } T \text{ intersecting } \text{Fred}_0^{\text{sym},1}$.

Remark the hard part of computing M^{spec} is the multiplicities of eigenvalues.

In dim=2, there is a faster way via winding numbers (Section 3.5 in [Int])