

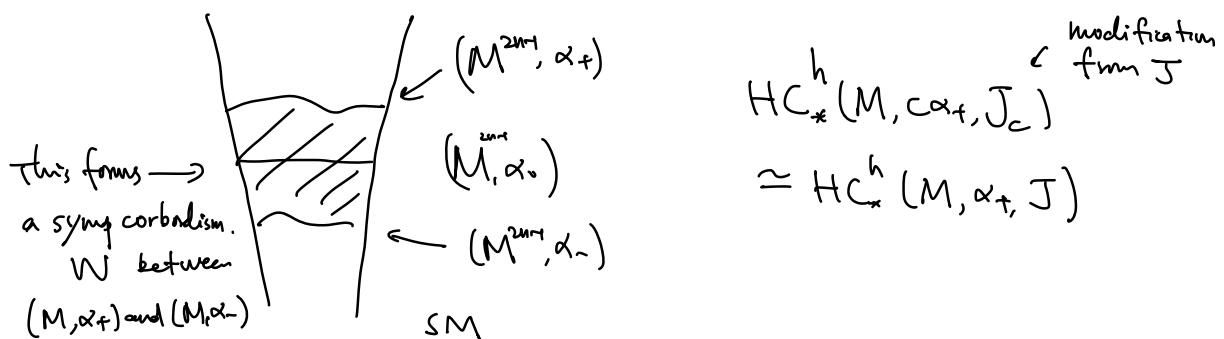
$$\Rightarrow \partial^2 = 0$$

$$\Rightarrow HC_*^h(M, \alpha, J) := H_*(CC_*^h(M, \alpha), \partial).$$

Question: Dependence on α and J ?

Given $\alpha_+ \stackrel{f \circ \alpha_0 \text{ and } J}{\sim} \alpha_-$ by rescaling α_+ by constant $c \geq 1$,

assume $f_+ > f_-$ pointwise:



Then consider $\mathbb{E}_*^J : CC_*^h(M, \alpha_+) \rightarrow CC_*^h(M, \alpha_-)$

$$\begin{matrix} \delta & \longrightarrow & \delta' \end{matrix} \quad \begin{matrix} \text{and } \delta = \delta' \in W \end{matrix}$$

and verify that

$$\begin{array}{ccc} CC_*^h(M, \alpha_+) & \xrightarrow{\mathbb{E}_*^J} & CC_*^h(M, \alpha_-) \\ \delta_+ \downarrow & \curvearrowright & \downarrow \delta_- \\ CC_{*-1}^h(M, \alpha_+) & \xrightarrow{\mathbb{E}_{*-1}^J} & CC_{*-1}^h(M, \alpha_-) \end{array}$$

this diagram commutes, so \mathbb{E}_*^J is a chain map.

$$\Rightarrow \mathbb{E}_\alpha^J : HC_*^h(M, \alpha_+, J) \longrightarrow HC_*^h(M, \alpha_-, J)$$

a well-defined homomorphism.

any α

$$\text{In a similar way, for } J, J' \exists \mathbb{E}_*^{J, J'} : HC_*^h(M, \alpha, J) \xrightarrow{\quad} HC_*^h(M, \alpha, J')$$

$$\Rightarrow HC_*^h(M, \alpha_+, J) \xrightarrow{\mathbb{E}_*^J} HC_*^h(M, \alpha_-, J) \xrightarrow{\mathbb{E}_*^{J, J'}} HC_*^h(M, \alpha_-, J')$$

$\xrightarrow{\quad}$

Then switching (α_+, J) and (α_-, J') , we get \mathbb{E} and verify

$$\mathbb{E} \cdot \mathbb{E} = \mathbb{E} \cdot \mathbb{E} = 1 \Leftarrow \text{counting trivial cylinders.}$$

$$\Rightarrow HC_*^h(M, \alpha, J) \underset{\text{def}}{=} HC_*^h(M, \{\})$$

This is called the cylindrical contact homology
of contact mfld $(M, \{\})$.

Prop: $\varphi : (M, \{\}) \rightarrow (M', \{\})$ contactomorphism s.t. $\varphi_* h = h'$

for $h \in [S^1, M]$. Assume \exists contact 1-form α' of $\{\}$ s.t. α' is h' -admissible, then \exists contact 1-form α of $\{\}$ s.t. α is h -admissible and $HC_*^h(M, \{\}) = HC_*^{h'}(M', \{\})$.

$\Rightarrow HC_*^h(M, \{\})$ defines a contact invariant (of contact str) \uparrow up to contactomorphism.

One can use $HC_*^h(M, \{\})$ to distinguish different contact str.

Ex. $T^3 = S^1 \times S^1 \times S^1$, where $S^1 = \mathbb{R}/\mathbb{Z}$, in coordinate (ρ, φ, θ) .

Consider $\alpha_k := \cos(2\pi k \rho) d\theta + \sin(2\pi k \rho) d\varphi$. $k \in \mathbb{N}_{\geq 1}$.

$$\begin{aligned}
 \text{Then } \alpha_k \wedge d\alpha_k &= (\cos(2\pi k \rho) d\theta + \sin(2\pi k \rho) d\varphi) \wedge \\
 &\quad 2\pi k \rho (-\sin(2\pi k \rho) d\theta \wedge d\theta + \cos(2\pi k \rho) d\theta \wedge d\varphi) \\
 &= 2\pi k \rho (-\sin^2(2\pi k \rho) d\varphi \wedge d\theta \wedge d\theta + \\
 &\quad \cos^2(2\pi k \rho) d\theta \wedge d\theta \wedge d\varphi) \\
 &= 2\pi k \rho d\theta \wedge d\varphi \wedge d\theta > 0
 \end{aligned}$$

Reeb vector field R_{α_k} is

$$R_{\alpha_k} = \sin(2\pi k \rho) \partial_\varphi + \cos(2\pi k \rho) \partial_\theta$$

\Rightarrow closed Reeb orbits are in the form:

$$\begin{aligned}
 \{p\} \times \mathbb{T}^2 &\simeq \{p\} \times \text{[Diagram]} \\
 \left(\mathbb{T}^3 = \coprod_{p \in \mathbb{N}/2} \{p\} \times \mathbb{T}^2 \right)
 \end{aligned}$$

In particular, all closed Reeb orbits are non-contractible.

Rmk These orbits are degenerate (so extra work is needed).

Thm For $h = [t \mapsto (0, 0, t)]$, we have

$$HC_*^h(\mathbb{T}^3, \{p\}_k) = \begin{cases} \mathbb{Z}_2^k & * \text{ is odd} \\ \mathbb{Z}_2^k & * \text{ is even} \end{cases}$$

\Rightarrow for different k, l , $\mathcal{S}_k \not\cong \mathcal{S}_l$. cont

(Here one needs to practice an exercise: if $h, h' \in [S^1, \mathbb{P}^3]$, primitive and mapped to trivial class under projection $\mathbb{P}^3 \rightarrow S^1$, $(p, \varphi, 0) \mapsto p$. Then \exists a contactomorphism $\varphi: (\mathbb{P}^3, \mathcal{S}_k) \rightarrow$ s.t. $\varphi_* h = h'$.)

Remark Observe that for each $k \in \mathbb{N}_{\geq 1}$, consider smooth deformations,

$$\ker((1-s)\alpha_k + sdp) \quad s \in [0, 1] \quad \text{w+ contact}$$

and we get from \mathcal{S}_k ($= \ker \alpha_k$) to $\ker(dp)$. So topologically
all hypersurfaces \mathcal{S}_k (for $k \in \mathbb{N}_{\geq 1}$) are the same.

(\Rightarrow we need refined contact geo machinery to distinguish $\mathcal{S}_k, \mathcal{S}_l$).

Remark This result has been known since 90s (by Grunewald, Kanda).

2. Neck-stretching

(X^{2n}, ω) closed sympl. manifold

$M \subset X^{2n}$ hypersurface of contact type

$$M \xrightarrow{\quad \text{neck} \quad} \begin{array}{c} \uparrow \quad \uparrow \quad \uparrow \quad \uparrow \quad \uparrow \\ \text{---} \end{array} \quad \Rightarrow \quad \lambda = \text{length}$$

a NBH of M in X
can be identified with
 $((-\varepsilon, \varepsilon) \times M, r d\lambda)$

a part of symplectization

or more general
stable hypersurface
(which induced stable
ham str on M).

For any $k \in \mathbb{N}$, consider a reparametrization

$$(-k, k) \longrightarrow (-\varepsilon, \varepsilon)$$

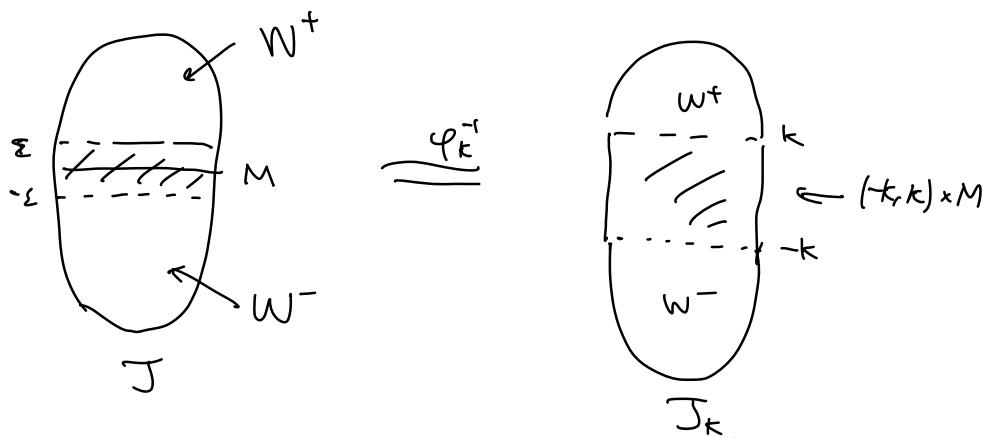
s.t. $(-k, k) \times M \xrightarrow[\varphi_k]{\text{symp}} (-\varepsilon, \varepsilon) \times M$

Then if we fix a compatible a.c.s J on $(-\varepsilon, \varepsilon) \times M$,

can be induced by
a compatible a.c.s J on (X, ω)

then $(\varphi_k^{-1})_* J =: J_k$ is a compatible a.c.s on $(-k, k) \times M$

and extend to J_k on (X^k, ω) .



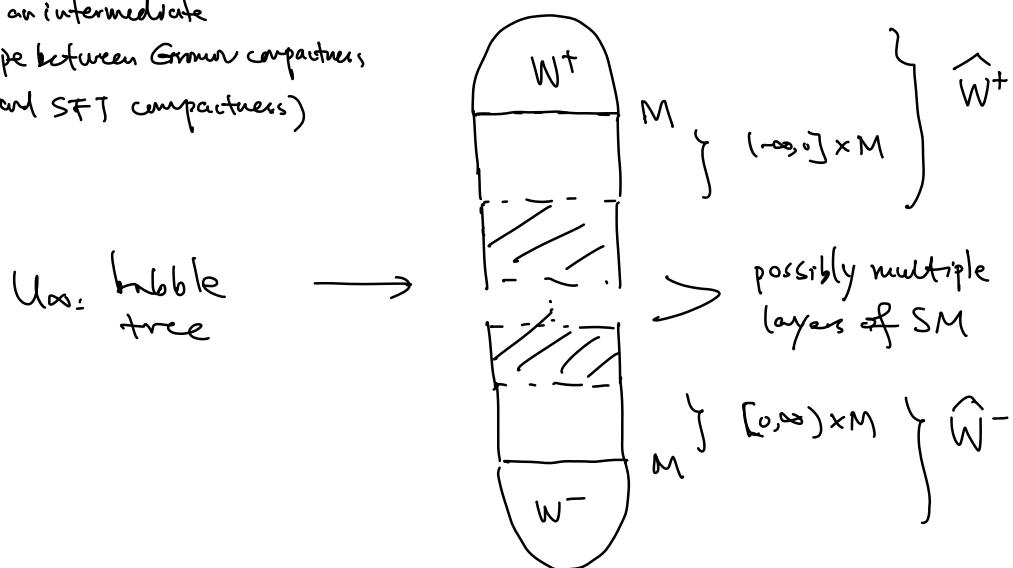
As $k \rightarrow \infty$, up to sympl. the ambient space does not change (X^k, ω)
but a.c.s J has been "stretched" around $M \leftarrow$ called neck-stretching.

Now, take a J -hw| curve $u: (S^1, j) \rightarrow (X^k, \omega, J)$ and
carry out this neck-stretching:

$$u \mapsto u_k: (S^1, j) \rightarrow (X_k^{\varepsilon_n}, \omega, J_k) \quad J_k\text{-hw|}$$

and in the limit, we will see a "hol building"

(as an intermediate
type between Gromov compactness
and SFT compactness)



Application: Obstruct embedding of a Log submfld $\hookrightarrow (X^\infty, \omega)$

(b/c "Log" Weinstein Thm says any Log submfld $L \subset (X^\infty, \omega)$ admits a NBH $U \subset X^\infty$ s.t. $U \xrightarrow{\cong} \text{NBH of } \underbrace{\text{OLC } T^*L}$.

Then equip L with a metric g , then $U_g^* L \xrightarrow{\cong} T^* L$

and $\partial U_g^* L (= S_g^* L)$ unit cosphere bundle will serve as a hypersurface $M \subset (X^\infty, \omega)$ under the symplectomorphism \mathbb{E}

3. Obstructing domain embeddings

$L(r, s) = \bigcap_{\mathbb{C}} S'(r) \times \bigcap_{\mathbb{C}} S'(s) \subset \mathbb{C}^2$ split Log tori.

Question Given a domain $U \subset \mathbb{C}^2$, which (r, s) s.t. $\mathcal{L}(r, s) \hookrightarrow U$?

e.g. $U = E(a, b)$.

Remark One can assume $r \leq s$.

Then (Hint - 2020)

For $E(a, b)$ with $\frac{b}{a} \in \mathbb{N}_{\geq 2}$, we know

$$\mathcal{L}(1, x) \hookrightarrow E(a, b) \Leftrightarrow \begin{cases} x < b(1 - \frac{1}{a}) & \text{if } 1 \leq x < 2 \\ \text{either } a > 2 \\ \text{or } x < b(1 - \frac{1}{a}) & \text{if } x \geq 2 \end{cases}$$

" \Rightarrow " obstructive part (given by SFT)

" \Leftarrow " construction (flexibility)

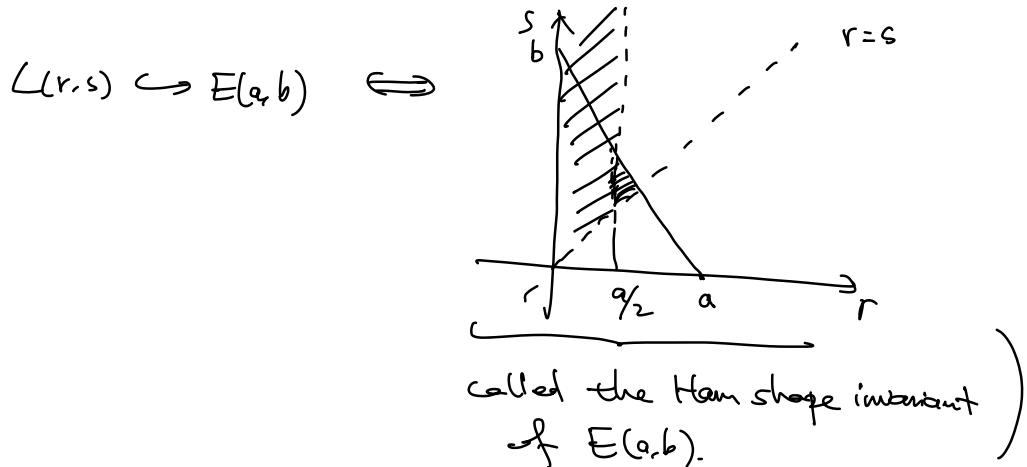
Then $\mathcal{L}(r, s) \hookrightarrow E(a, b) \Leftrightarrow \mathcal{L}(1, \frac{s}{r}) \hookrightarrow E\left(\frac{a}{r}, \frac{b}{r}\right)$

$$\Leftrightarrow \begin{cases} \frac{s}{r} < \frac{b}{r}(1 - \frac{a}{r}) & \text{if } 1 \leq \frac{s}{r} < 2 \\ \text{either } \frac{a}{r} > 2 \\ \text{or } \frac{s}{r} < \frac{b}{r}(1 - \frac{a}{r}) & \text{if } \frac{s}{r} \geq 2 \end{cases}$$

$\frac{a}{r} + \frac{b}{s} < 1$

$$\Leftrightarrow \begin{cases} s < b(1 - \frac{a}{r}) & \text{if } r \leq s < 2r \\ \text{either } \frac{a}{r} > r \leftarrow \text{condition on } s \\ \text{or } s < b(1 - \frac{a}{r}) & \text{if } s \geq 2r \end{cases}$$

Encode (r, s) (with $r \leq s$) into a 2-dim picture:



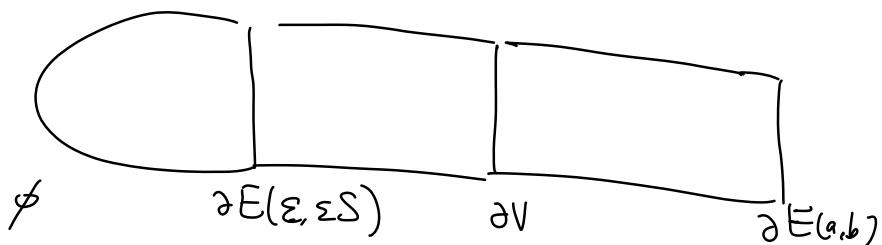
About the proof of " \Rightarrow ": if $L(1, x) \hookrightarrow E(a, b)$
then NBH V (of image of $L(1, x)$) $\hookrightarrow E(a, b)$

Consider $E(\varepsilon, \varepsilon S) \hookrightarrow V$ when $0 < \varepsilon \ll 1$ sufficiently small.

then $E(\varepsilon, \varepsilon S) \hookrightarrow V \hookrightarrow E(a, b)$ induces the following
embeddings:

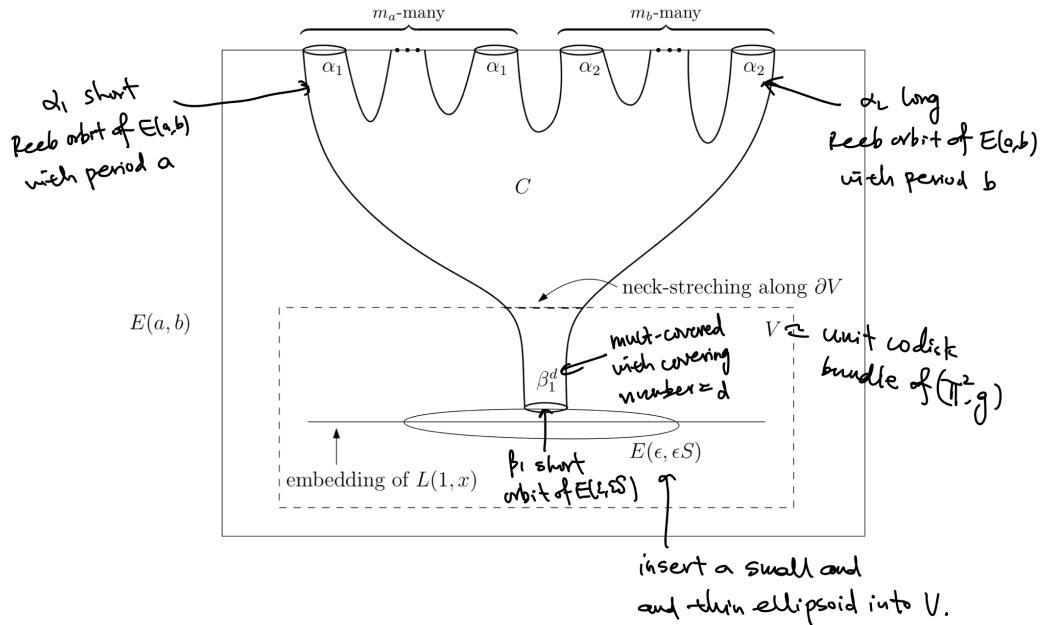
$$\mathcal{E} \xrightarrow{\quad} E(\varepsilon, \varepsilon S) \xrightarrow{\quad} V \xrightarrow{\quad} E(a, b)$$

$E(\varepsilon, \varepsilon S) \quad V \setminus \text{im}(E(\varepsilon, \varepsilon S)) \quad E(a, b) \setminus \text{im}(V)$

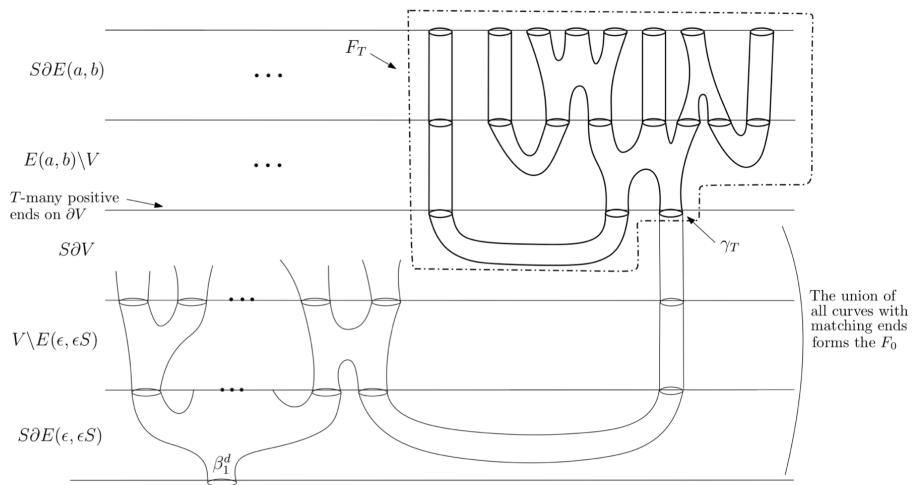


Consider a \mathbb{T} -hol curve in the following type:

e.g. related to $L(1, x) \hookrightarrow E(a, b)$



After neck-stretching, one could see the limit curve :
(holomorphic building)



Then the proof starts from analysis on different components... //

Thank You !