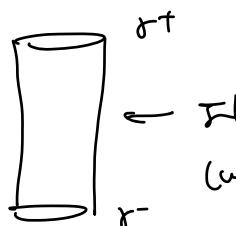


Application of SFT

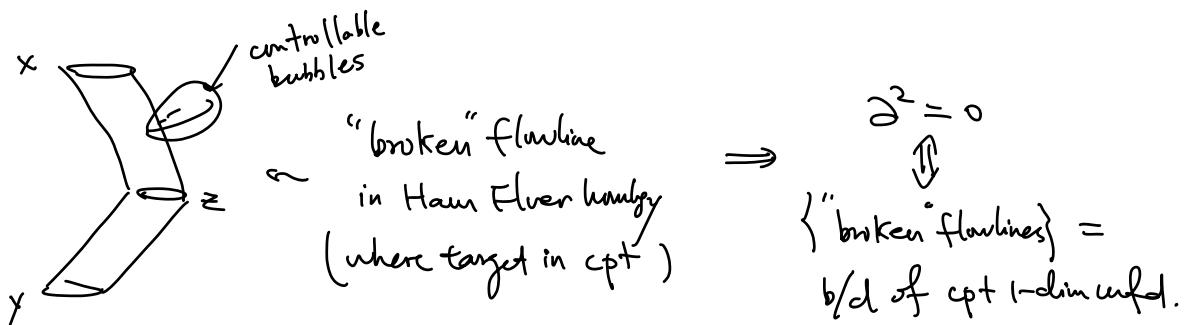
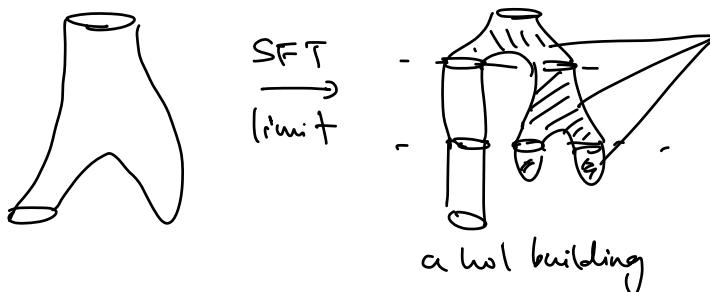
1. Cylindrical contact homology

Similarly to Ham Floer homology, given a contact mfld $(M, \beta = ker \alpha)$ one can consider SM symplectization and a Floer theory based on closed Reeb orbits, connected by \mathbb{J} -hol cylinders



Question: define ∂ and show $\partial^2 = 0$.

An obvious trouble: $\partial^2 = 0$ involves counting index=2 cylinders and in particular "boundary" elements in compactification of moduli space.



These components are in general not in the top type of cylinders (due to SM is un-cpt).

Here is a quick way to fix this \rightarrow simply requiring there does not exist any contractible closed Reeb orbits.

Def. Fix a homotopy class $h \in [S^1, M]$ and assume it is primitive (i.e. not iteration of another htp class).

Denote $P_h(\alpha) = \{ \text{closed Reeb orbits of } (M, \xi = \ker \alpha) \text{ in class } h \}$

We call α for contact str ξ h -admissible if (1) \nexists any contractible closed Reeb orbit; (2) any element in $P_h(\alpha)$ is unbdg.

$\xrightarrow{\text{to guarantee that limit behavior of } J\text{-hol/curve in } SM \text{ is "uniform"}}$

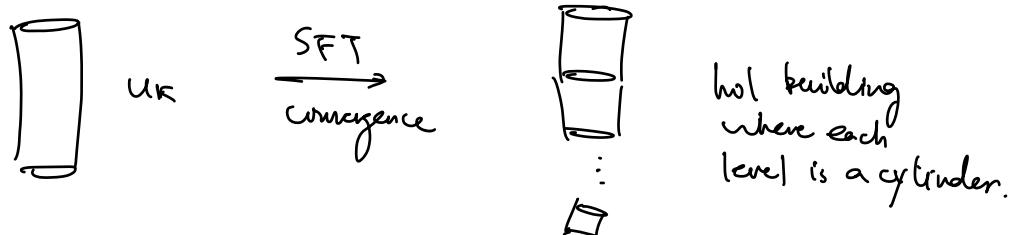
Rmk "h is primitive" is to make sure no multiple covering.

\Rightarrow consider only hol cylinders between closed Reeb orbit (from $P_h(\alpha)$) with one positive end and one negative end, then

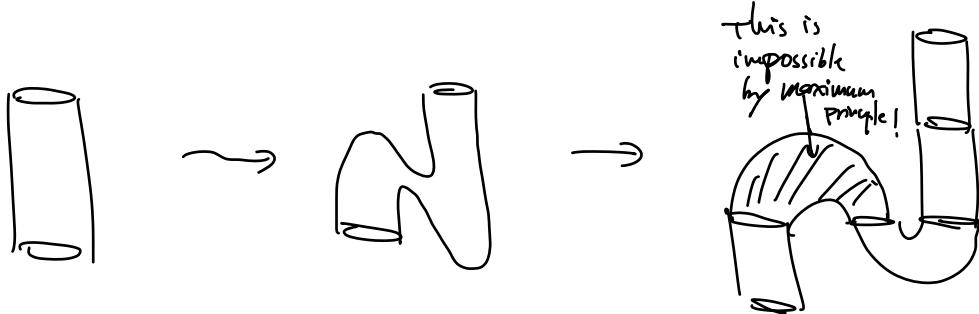
$\{ J \text{ a.c.s on } SM \mid \# J\text{-hol cylinder induces} \}$
Fredholm operator

is generic (b/c no multiple cover \Leftrightarrow simple \Leftrightarrow ^{somewhat} \hookrightarrow injective).

No contractible closed Reeb orbits \Rightarrow a compactness result (Prop 10.19
in [Wen])



e.g.



⇒ Under this h -admissible condition, we can use cylinders to form a fiber theory.

Define $\mathbb{C}C_*^h(M, \alpha) := \bigoplus_{\gamma \in P_h(\alpha)} \mathbb{Z}_2 \langle \gamma \rangle$

← each admits a grading $n-3 + M_{\gamma}^{\infty}(r)$
 (depending on a choice of orientation)

$$\partial \gamma = \sum_{\gamma' \in P_h(\alpha)} \#_{\gamma} M^{\text{index}=1} \left(\square_{\gamma'}^{\gamma} \right) /_{\mathbb{R}} \cdot \gamma'$$

Here, $\text{index} = \text{ind}(u)$ (\simeq difference of grading of γ and γ')

(Note that a trivial cylinder $\square_{\gamma}^{\gamma}$ is identified with a point after modulo \mathbb{R} -translation.)

Prop 1.1.21 ⇒ For a generic J , fixed $\gamma^{\pm} \in P_h(\alpha)$,

$$\overline{M^{\text{ind}=\pm}(\square_{\gamma^{\pm}}^{\gamma^{\mp}})} = \text{cpt ind ind wfd with b/d}$$

and $\partial \overline{M^{\text{ind}=\pm}(\square_{\gamma^{\pm}}^{\gamma^{\mp}})} = \bigsqcup_{\gamma_0 \in P_h(\alpha)} M^{\text{ind}=1}(\square_{\gamma_0}^{\gamma^{\mp}}) \times M^{\text{ind}=1}(\square_{\gamma_0}^{\gamma^{\pm}})$

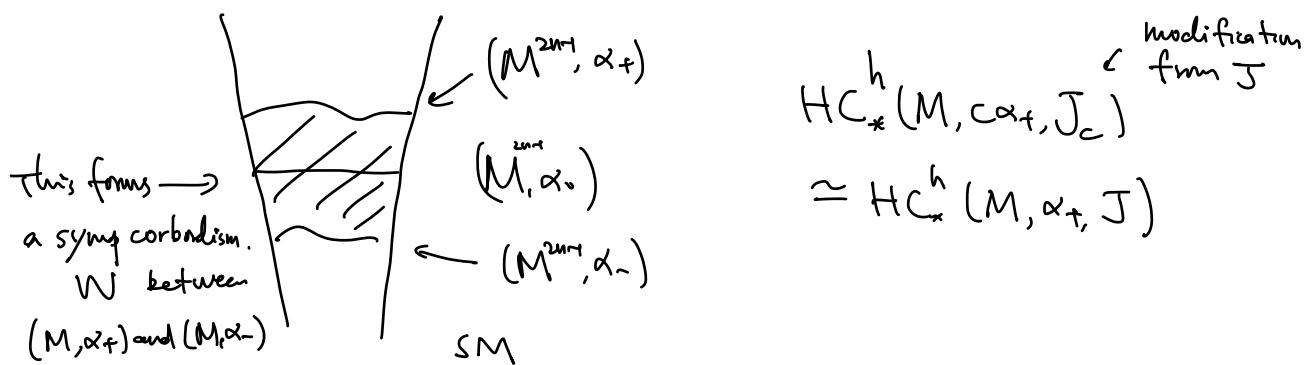
$$\Rightarrow \partial^2 = 0$$

$$\Rightarrow HC_*^h(M, \alpha, J) := H_*(CC_*^h(M, \alpha), \partial).$$

Question: Dependence on α and J ?

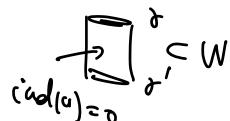
Given $\alpha_+ =_{\text{fixed}} \alpha_-$ and J
 Given α_+ of $\{, \wedge\}$ by rescaling α_+ by constant $c \Rightarrow 1$,

assume $f_+ > f_-$ pointwise:



Then consider $\mathbb{E}_*^J : CC_*^h(M, \alpha_+) \rightarrow CC_*^h(M, \alpha_-)$

$$\partial \rightarrow \partial'$$



and verify that

$$\begin{array}{ccc}
 CC_*^h(M, \alpha_+) & \xrightarrow{\mathbb{E}_*^J} & CC_*^h(M, \alpha_-) \\
 \partial_+ \downarrow & \curvearrowright & \downarrow \partial_- \\
 CC_{*-1}^h(M, \alpha_+) & \xrightarrow{\mathbb{E}_{*-1}^J} & CC_{*-1}^h(M, \alpha_-)
 \end{array}$$

This diagram commutes, so \mathbb{E}_*^J is a chain map.

$$\Rightarrow \underline{\Xi}^J_* : HC_*^h(M, \alpha_+, J) \longrightarrow HC_*^h(M, \alpha_-, J)$$

a well-defined homomorphism.

any α

In a similar way, for J, J' , $\exists \underline{\Xi}^{J, J'}_* : HC_*^h(M, \alpha, J) \xrightarrow{\text{any } \alpha} HC_*^h(M, \alpha, J')$

$$\Rightarrow HC_*^h(M, \alpha_+, J) \xrightarrow{\underline{\Xi}^J_*} HC_*^h(M, \alpha_-, J) \xrightarrow{\underline{\Xi}^{J, J'}_*} HC_*^h(M, \alpha_-, J')$$

$\xrightarrow{\underline{\Xi}}$

Then switching (α_+, J) and (α_-, J') , we get $\underline{\Xi}$ and verify

$$\underline{\Xi} \cdot \underline{\Xi} = \underline{\Xi} \cdot \underline{\Xi} = 1 \Leftarrow \text{counting trivial cylinders.}$$

$$\Rightarrow HC_*^h(M, \alpha, J) \underset{\text{def}}{=} HC_*^h(M, \{\}).$$

This is called the cylindrical contact homology
of contact mfld $(M, \{\})$.

Prop: $\varphi : (M, \{\}) \rightarrow (M', \{\})$ contactomorphism s.t. $\varphi_* h = h'$

for $h \in [S^1, M]$. Assume \exists contact 1-form α' of $\{\}$ s.t. α' is h' -admissible, then \exists contact 1-form α of $\{\}$ s.t. α is h -admissible and $HC_*^h(M, \{\}) = HC_*^{h'}(M', \{\})$.

$\Rightarrow HC_*^h(M, \{\})$ defines a contact invariant (of contact str)_{up to contactomorphism}.

One can use $HC_*^h(M, \{\})$ to distinguish different contact str.

Ex: $T^3 = S^1 \times S^1 \times S^1$, where $S^1 = \mathbb{R}/\mathbb{Z}$, in coordinate (ρ, φ, θ) .

Consider $\alpha_k := \cos(2\pi k \rho) d\theta + \sin(2\pi k \rho) d\varphi$. $k \in \mathbb{N}_{\geq 1}$.

$$\begin{aligned}
 \text{Then } \alpha_k \wedge d\alpha_k &= (\cos(2\pi k \rho) d\theta + \sin(2\pi k \rho) d\varphi) \wedge \\
 &\quad 2\pi k \rho (-\sin(2\pi k \rho) d\rho \wedge d\theta + \cos(2\pi k \rho) d\rho \wedge d\varphi) \\
 &= 2\pi k \rho (-\sin^2(2\pi k \rho) d\varphi \wedge d\rho \wedge d\theta + \\
 &\quad \cos^2(2\pi k \rho) d\theta \wedge d\rho \wedge d\varphi) \\
 &= 2\pi k \rho d\rho \wedge d\varphi \wedge d\theta > 0
 \end{aligned}$$

Reeb vector field R_{α_k} is

$$R_{\alpha_k} = \sin(2\pi k \rho) \partial_\varphi + \cos(2\pi k \rho) \partial_\theta$$

\Rightarrow closed Reeb orbits are in the form:

$$\begin{aligned}
 \{\rho\} \times \mathbb{T}^2 &\simeq \{\rho\} \times \text{Diagram} \\
 \left(\mathbb{T}^3 = \bigcup_{\rho \in \mathbb{N}/2} \{\rho\} \times \mathbb{T}^2 \right)
 \end{aligned}$$

In particular, all closed Reeb orbits are non-contractible.

Rmk These orbits are degenerate (so extra work is needed).

Thm For $h = [t \mapsto (0, 0, t)]$, we have

$$HC_*^h(\mathbb{T}^3, \{\rho\}_k) = \begin{cases} \mathbb{Z}_2^k & * \text{ is odd} \\ \mathbb{Z}_2 & * \text{ is even} \end{cases}$$

\Rightarrow For different k, l , $\mathcal{S}_k \overset{\text{cont}}{\neq} \mathcal{S}_l$.

(Here one needs to practice an exercise: if $h, h' \in [S^1, \mathbb{P}^3]$, primitive and mapped to trivial class under projection $\mathbb{P}^3 \rightarrow S^1$, $(p, \varphi, 0) \rightarrow p$. Then \exists a contactomorphism $\varphi: (\mathbb{P}^3, \mathcal{S}_k) \rightarrow S^1$ s.t. $\varphi_* h = h'$.)

Remark Observe that for each $k \in \mathbb{N}_{\geq 1}$, consider smooth deformations,

$$\ker((1-s)\alpha_k + s dp) \quad s \in [0, 1]$$

and we get from \mathcal{S}_k ($= \ker \alpha_k$) to $\ker(dp)$. So topologically all hypersurfaces \mathcal{S}_k ($\text{for } k \in \mathbb{N}_{\geq 1}$) are the same.

(\Rightarrow we need refined contact geo machinery to distinguish $\mathcal{S}_k, \mathcal{S}_l$).

Remark This result has been known since 90s (by Giroux, Kanda).