

PREPARATION SHEET (MATH7431P - USTC, FALL 2025)

This document outlines the source of questions for the upcoming Final Exam. All exam questions will be selected from the following question pool, which consists of: key concepts and statements from lecture notes, problems from Homework One through Homework Four, and proofs of propositions/theorems presented in the notes. The pool, and consequently the exam, contains three categories of problems:

- A : Problems on Definitions and Statements;
- B : Problems on Computations;
- C : Problems on Proofs.

For Category A: **10 problems (each worths 5 points)** will be selected for the exam from a pool of 20 problems. For Category B: **2 problems (each worths 10 points)** will be selected from a pool of 5 problems. For Category C: **2 problems (each worths 15 points)** will be selected from a pool of 3 problems.

A. PROBLEMS on DEFINITIONS and STATEMENTS.

- (1) Bundle-valued forms (definition and its construction)
- (2) Connections on a vector bundle (definition and basic properties).
- (3) Sobolev embedding theorems (statements and definitions of involving notations).
- (4) Convolution and mollifier (definition and basic properties).
- (5) J -holomorphic curve (definition) and its regularity theorem.
- (6) Description of $\bar{\partial}_J$ in terms of a section of a certain bundle.
- (7) Fredholm operator between Banach spaces (definition and basic properties).
- (8) Implicit function theorem in the setting of Banach manifolds.
- (9) Carleman Similarity Principle (statement).
- (10) Gromov compactness theorem (statement, with target being a closed symplectic manifold and domain being Riemann surfaces without marked points).
- (11) Spectral flow (definition, in the finite-dimensional setting).

- (12) Stably framed Hamiltonian structure (definition) on an odd-dimensional manifold and its symplectization.
- (13) Definition of a J -holomorphic being simple (in terms of the covering theorem for J -holomorphic curves), not only using the term “somewhere injective”.
- (14) Definition of the first Chern number of complex vector bundles over a closed Riemann surface, and dimension formula of the moduli space of simple curves $\mathcal{M}_{J,A}^*$ (where target is a closed almost complex structure (M, J) and domain is (Σ, j) , with respect to a fixed class $A \in H_*(M; \mathbb{Z})$).
- (15) Definition of a pointed Riemann surface (Σ_g, j, Θ) and definition of being stable, and list all possible non-stable cases.
- (16) Definitions of energy in different settings: J -holomorphic curve into closed symplectic manifold, J -holomorphic curve into a symplectization, Floer trajectory in Hamiltonian Floer homology theory.
- (17) State the convergence phenomenon in a rigorous way when the limit of a sequence of gradient flowlines is a “broken flowline” in the Morse setting.
- (18) Removal of singularities (statement).
- (19) Definition of the Deligne-Mumford compactification $\overline{\mathcal{M}}_{g,\ell}$.
- (20) Draw a picture of a holomorphic building of height $1|1|3$ with arithmetic genus 2 and 3 marked points, and the number of connected components of domain is 13.

B. PROBLEMS on COMPUTATIONS.

- (1) HW One, Exercise 5.
- (2) HW Two, Exercise 1.
- (3) HW Two, Exercise 4.
- (4) HW Three, Exercise 3.
- (5) HW Four, Exercise 1.

C. PROBLEMS on PROOFS.

- (1) Fix a closed symplectic manifold (M, ω) and an ω -compatible almost complex structure J . Prove that there exist a constant $\hbar > 0$ and $C > 0$ such that for any

J -holomorphic curve $u : (\Sigma, j) \rightarrow (M, \omega, J)$, where (Σ, j) is a Riemann surface with boundary, if $E(u) < \hbar$, then

$$E(u) \leq C \cdot \text{length}_{g_J}^2(u(\partial\Sigma)).$$

Here, g_J is the induced metric $\omega(\cdot, J\cdot)$ from ω and J .

For this problem, one needs to state and use the monotonicity lemma directly (no need to prove this lemma). **Any other intermediate results/claims need detailed justifications.

(2) Given two J -holomorphic curves: $u_0, u_1 : (\Sigma, j) \rightarrow (M, J)$ where Σ is connected, assume they agree to infinite order at point $z_0 \in \Sigma$, then prove $u_0 \equiv u_1$. Moreover, derive from this, prove that if u is not constant, then the set of its critical points is discrete in Σ .

(3) Fix a closed symplectic manifold (M, ω) and an ω -compatible almost complex structure J . Let $u_n : (\Sigma, j) \rightarrow (M, \omega, J)$ be a sequence of J -holomorphic curve such that there exists a uniform (independent of n) constant $C > 0$ with $E(u_n) < C$. Prove that if there exists a sequence of points $\{z_n\}_{n \in \mathbb{N}}$ such that z_n converge to z and $|du_n(z_n)| \rightarrow +\infty$, then z is a bubble point of the sequence $\{u_n\}_{n \in \mathbb{N}}$.

**For this problem, feel free to use the following two results.

Lemma 0.1. *Let (X, d) be a complete metric space, $\delta > 0$, $x \in X$, and $f : X \rightarrow [0, \infty)$ be a continuous function. Then there exists some $\xi \in X$ and $\epsilon > 0$ with the following properties.*

- (i) $\epsilon \leq \delta$;
- (ii) $d(x, \xi) < 2\delta$;
- (iii) $\epsilon f(\xi) \geq \delta f(x)$;
- (iv) $2f(\xi) \geq \sup_{B_\epsilon(\xi)} f$;

where $B_\epsilon(\xi)$ is the closed ball centered at ξ with radius ϵ .

Lemma 0.2. *Let $v_n : (B_{R_n}(0), j_{\text{std}}) \rightarrow (M, \omega, J)$ be a sequence of J -holomorphic maps (into a closed symplectic manifold (M, ω)), where $R_n \rightarrow \infty$. If $E(v_n) < C$ for a uniform upper bound $C > 0$ (independent of n), then there exists a subsequence of $\{v_n\}_{n \in \mathbb{N}}$ converging to a J -holomorphic map $v_\infty : (\mathbb{C}, j_{\text{std}}) \rightarrow (M, J)$ in C_{loc}^∞ -sense (i.e, smoothly over any compact subset of \mathbb{C}).*