Lecture 8 Miscellaneous = last lecture of this semester This lecture covers 3 different topics ① Hudge theory (without analysis part) ② integrable distribution ③ Sand's Thin

1. Hodge theory (de Rham-oriented).

Secoly the *-operator. fix a volume form Ω of an oriented unfold M. Locally suppose space of forms has the following basis $e^{i_{z}dx_{1}}$ $e^{i_{z}dx_{1}}$ $e^{i_{z}dx_{1}}$ $e^{i_{z}dx_{2}}$ $e^{i_{z}dx_{1}}$ $e^{i_{z}dx_{2}}$ $e^{i_{z}dx_{1}}$ $e^{i_{z}dx_{2}}$ $e^{i_{z}dx_{$

where $C_{i_1\cdots i_k} = (-1)^{i_1+\cdots+i_k+1+\cdots+k}$

(or equivariently, $\Sigma_{i_1...i_k}$ is determined by ein N... Neie N * (ein N... Neie) = + De assuning bully rechance

In general, if $\alpha = \sum_{i_1 \dots i_k} f_{i_1 \dots i_k} e^{i_1} \wedge \dots \wedge e^{i_k}$, then define

In this way, $\chi: 52^k(M) \longrightarrow 52^{n-k}(M)$ a $C^{\infty}(M)$ -linear map.

Observations.

· For one Star), then ** = (-1) tont) a $\star \left(\star \left(e^{1} \wedge \cdots \wedge e^{1} e^{1}\right) = \left(-1\right)^{1} \cdot t \cdots + 1 \cdot \left(\star + 1 + \cdots + k + \left(\star + e^{1} \wedge \cdots \wedge e^{1} \wedge \cdots \wedge e^{1} \wedge \cdots \wedge e^{1}\right)\right)$

$$= (-1)^{\frac{(1+\cdots+n)+(1+\cdots+k+1+\cdots+n-k)}{2}} e^{\frac{1}{1}} \cdot \dots \cdot e^{\frac{1}{1}k}$$

$$= (-1)^{\frac{(1+\cdots+n)+(1+\cdots+k+1+\cdots+n-k)}{2}} e^{\frac{1}{1}} \cdot \dots \cdot e^{\frac{1}{1}k}$$

$$= (-1)^{\frac{n+n+k+k+k+(n-k)+n^2-2nk+k^2}{2}} e^{\frac{1}{1}} \cdot \dots \cdot e^{\frac{1}{1}k}$$

$$= (-1)^{\frac{n+n+k^2-nk}{2}} e^{\frac{1}{1}} \cdot \dots \cdot e^{\frac{1}{1}k}$$

One can introduce a luce l'inver product w.r.t basic above.

(2, β):= ($\sum_{i_1...i_k} e^{2i_1} \wedge ... \wedge e^{2i_k}$, $\sum_{j_1...j_k} e^{j_1} \wedge ... \wedge e^{j_k}$) $\sum_{i_1...i_k} e^{2i_1} \cdot ... \cdot e^{2i_k}$ $\sum_{i_1...i_k} e^{2i_1} \cdot ... \cdot e^{2i_k}$

from
$$A \wedge *\beta = \langle \alpha, \beta \rangle \Sigma$$
 for $\alpha, \beta \in \Sigma^{\epsilon}(M)$

If. $\alpha = \sum f_{i,i} - c_{i} e^{i_{i}} \wedge \dots \wedge e^{i_{k}}$
 $*\beta = \sum f_{i,i} - c_{k} e^{i_{k}} \wedge \dots \wedge e^{i_{k}} \wedge \dots \wedge e^{i_{k}}$
 $*\lambda *\beta = \sum f_{i,i} - c_{k} e^{i_{k}} \wedge \dots \wedge e^{i_{k}} \wedge \dots \wedge e^{i_{k}} \wedge \dots \wedge e^{i_{k}}$
 $= \langle \alpha, \beta \rangle \Sigma$.

That $(*\alpha, *\beta) \Sigma = *\alpha \wedge (**\beta)$
 $= \langle \alpha, \beta \rangle \Sigma$
 $= \langle \alpha, \beta \rangle \Sigma$

By discussion above, the interesting object is $\alpha \wedge \star \beta$. Now, eate $A \in \Sigma^{k}(M)$ and $\beta \in \Sigma^{k}(M)$, then

 $d(\alpha \wedge \star \beta) = d\alpha \wedge (\star \beta) + (-1)^{k-1} \alpha \wedge d \star \beta.$ $\in \Omega^{n}(M) = d\alpha \wedge (\star \beta) + (-1)^{k-1+(n-k+1)(k-1)} \alpha \wedge (\star (\star d \star \beta))$ $= d\alpha \wedge (\star \beta) + (-1)^{n(k-1)} \alpha \wedge (\star (\star d \star \beta))$ $= d\alpha \wedge (\star \beta) - \alpha \wedge \star ((-1)^{n(k-1)+1} \star d \star \beta)$

Denote S: = (-1) " *d*. Then for a closed wild M, we have

0 = Jan(xB) - Jman(xB).) Stokes then

 $\int_{M} \langle d\alpha, \beta \rangle \Omega = \int_{M} \langle \alpha, \delta \beta \rangle \Omega \tag{*}$

Define a glubal inver product on space of forms (w.r.t a front Volume form I) by

(vally defined via fews.

(a, b):= [(a,b) I]

Estimate

The can check that this is ind of the choice of (via) coording.

Then (x) above can be neatly reformabled by, a estimate.

Then (x) above can be nearly reformbated by, $\alpha \in \mathcal{D}^{t-1}(M)$, $\beta \in \mathcal{D}^{t}(M)$, $\beta \in \mathcal{D}^{t}(M)$, $\beta \in \mathcal{D}^{t}(M)$ above (da, β) = (a, β) (and ($\beta a, \beta$) = (a, $\beta \beta$).

for a content (M) and $\beta \in \mathcal{D}^{t}(M)$

This means, wint the inner product (,), & is the adjoint operator of of.

d. $\Sigma^{k}(M) \longrightarrow \Sigma^{k+1}(M)$ but $S: \Sigma^{k}(M) \longrightarrow \Sigma^{k-1}(M)$.

Def Hødge-laplace operator is defined by $\Delta := \delta d + d\delta$

Note A: 52(m) -> 52(m).

Observaturs.

- \triangle is seef-edjoint, i.e. $(\triangle x, \beta) = (\alpha, \Delta \beta)$.

 $(\Delta a, \beta) = (\delta da + d\delta a, \beta) = (da, d\beta) + (\delta a, \delta \beta) = (a, \Delta \beta).$

=> If x=b, then

 $(\Delta \alpha, \beta) = (\Delta \alpha, \alpha) = (d\alpha, d\alpha) + (\delta \alpha, \delta \alpha) \geq 0.$

Moreover, if (Da, a)=0, when buth dd=0 and da=0, so Da=0.

condusión $\Delta \alpha = 0$ ill $\Delta \alpha = 0$. Def For a ufd M, it's harmonic K-form 1s $\mathcal{H}^{k}(M) := \left\{ \alpha \in \mathcal{N}^{k}(M) \mid \Delta \alpha = 0 \right\}$ $\left(= \left\{ \alpha \in \mathcal{N}^{k}(M) \mid d\alpha = \delta \alpha = 0 \right\} \right).$

Note-that $M^k(N) \subset closed k-form (so it reps some de Rham coh clas).$

Gremeter meanings of a harmonic forms: for at $\mathcal{H}^{k}(M)$, for any $\sigma \in \mathcal{D}^{k-1}(M)$.

 $(\alpha + d\sigma, \alpha + d\sigma) = (\alpha, \alpha) + 2(\alpha, d\sigma) + (d\sigma, d\sigma)$ $= (\alpha, \alpha) + 2(\alpha, \beta) + (d\sigma, d\sigma)$ $= (\alpha, \alpha) + (d\sigma, d\sigma)$

=> Within all possible reps of deflam coloclass O, the harmonic rep is the

minimal one who times product (-,-).

Thun (Hodge) Let M be a closed wfd.

- · HE(M) is fourte dim' | over 1R.
- Any at Dt(M) can be uniquely decomposed into

Mr(M) E DK-1(M).

Hun to apply such a chep thun:

e.g. consider j; $A^{k}(M) \longrightarrow Har(M)$ $\Rightarrow So'=0$ $\Rightarrow d = a_{1} + d_{1}$ Then if $[\alpha] = [\beta]$, then $\beta = \alpha + d_{2}$. then $(\beta, \beta) \geq (\alpha, \alpha)$.

(and symetrially, (a, a) > (f, B)), so a = f. This means i is injective.

For any class [a] = Har(m), by Hudge deemposition.

deunpor: itm

If & is closed, then

0= gr = g(0,

=> (801, 80)= (01, d801)=0

⇒ d=antdo

 $\alpha = \alpha_h + d\sigma + \delta\sigma'$ (where $\delta\sigma' = 0$ b/c α is closed) Then [dh] = [d]. This implies à is also sujective. hp Hodge HdR (M; (R) is finite din'l over IR. In particular every dekhan a harmenic vep. e.q. Clain. * △ = △ * of: suffice to show *dS=8d* (the by a symmetric

It: Suffice to show *dS = Sd* (the by a symmetric argument, *Sd = dS*) $\Rightarrow *\Delta = *(dS + Sd) = ... = \Delta*$).

For any $\alpha \in \mathcal{D}^{k}(M)$, $*S\alpha = *(H)^{n(k-1)+1} * d*\alpha$ $= (H)^{n(k-1)+1} (-1)^{(n-(n-k+1))(n-k+1)} d*\alpha$ $= (H)^{k} d*\alpha = (H)^{k} d*\alpha$

Similarly, $\begin{cases} * \alpha = (-1)^{n(n-k-1)+1} * d * (* \alpha) \end{cases}$ $\in \mathcal{N}^{n-k}(M)$ $= (-1)^{n(n-k-1)+1} + k(n-k) * d \alpha = (-1)^{k+1} * d \alpha$

Then by the previous $\underline{e.g.}$ we have for closed weld M, $H_{dR}^{k}(M; \mathbb{R}) \simeq H^{k}(M) \xrightarrow{\times} H^{n-k}(M) \simeq H_{dR}^{n-k}(M; \mathbb{R})$

and it is an iso (b/c ** = = =1). This implies the Poikcone dealing for closed wild M.

Ruk For the proof of Hudge Them, see chapter 6 of Warner's book or Usher's notes Chapter 1 the Hudge Them and Sobolev spaces.

2. Integrable distribution

Recall a vector field $X \in \Gamma(M)$ can be identified with a 1-dim'| subspace $\mathbb{R}(X(p))$ in each T_pM .

Line spanned by X(p)

An abvious generalization: take K-dim'l subspace $V_p \subset T_p M$.

NEKE dim M

Then the collection of $\{V_p\}_{p \in M}$ is called a K-dim'l distribution on M, usually denoted by D (or DK) and D(p) = V_p .

(Other names: field of K-dim'l subspaces, K-dim'l subspace freed...)

Here are two examples that shows D's can be different.

ag. For D^1 (\simeq a vector field on M), locally there exists a curve $\mathcal{T}: (-\varepsilon, \varepsilon) \to M$ s.t. $\mathcal{T}(o) \in D(\mathcal{T}(v)) = D(p)$ and $\mathcal{T}(q) \in \mathcal{T}(q)$.

eg. (Mm fundamenta/than e.g. above).

Given DE on M, satisfying tp, I am immersed p. NK > M St. $(749)(T_qN) = D^{E}(p)$ by def of immersion we know $T_qN \simeq D^{E}(p)$

(This immersed submill (N, q) may vary along p ∈ M)

Here is an insightful observation for any X, Y ∈ Dt (1'.e. X(p), Y(p) ∈ D(p)) then for $q \in N'$, $\chi(q) (\in D^{c}(q)) \xrightarrow{q-1} \chi(q) \in T_qN$. Similarly for $\chi(q) \rightarrow \chi(q)$ In other words, $\exists v.fs \ \widetilde{X}, \widetilde{Y} \text{ on } N \text{ s.t.} \ \varphi_*(\widetilde{X}) = X \text{ and } \varphi_*(\widetilde{Y}) = Y.$ Then recall $9x[X,Y] = [9xX, 9xY] = [x,Y] \in D^k$. ETN Poisson backet on N Poisson backet on M