
 

Lectures Miscellaneous last lecture of this semester

This lecture even 3 different topics

Hodge theory without analysis part

integrable distribution
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A Hodge Laplace operator is defined by
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Ruf For the proof of Helge them see chapter 6 of Warner's book
or Usher's notes chapter 1 The Hodge then and Sobolev spaces

2 Integrable distribution
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