

http://staff.ustc.edu.cn/~wangzuoq/Courses/23F-Manifolds/index.html

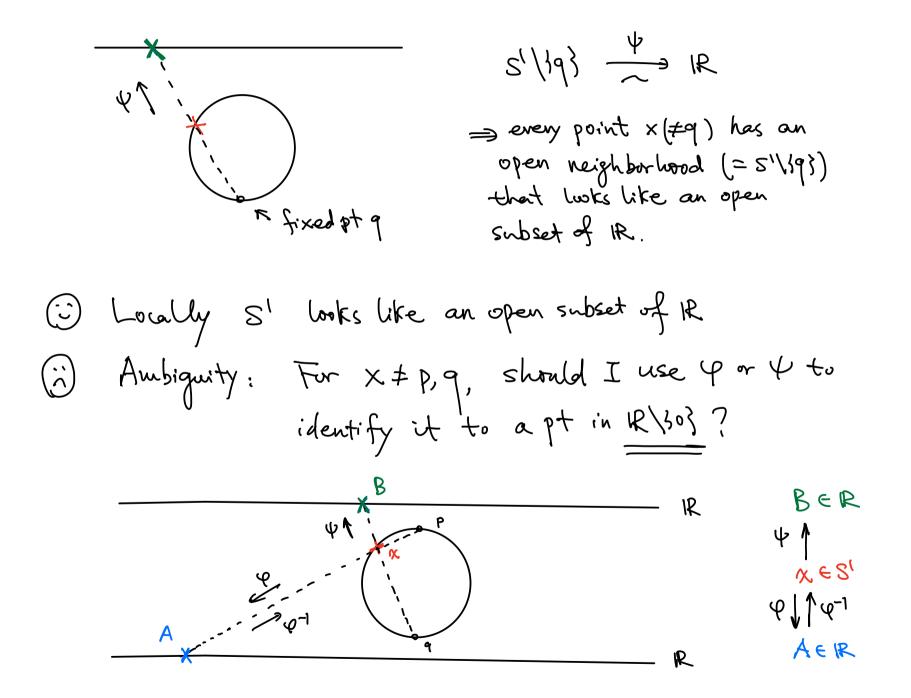
Topics covered in this course (ideally);							
	ter 35 concepts	st # computations	Herries				
EASY	- manifold and submfd - structure results of mfd	differentia forms	de Rham cohomology theory				
MIDDLE	- relations between Mfds: Vector bundles (filter)	integration and global vesults	Hodge theory (on harmonic forms)				
HARD	- dynamics: Lie derivatives connection	constructing examples	characteristic class theory				

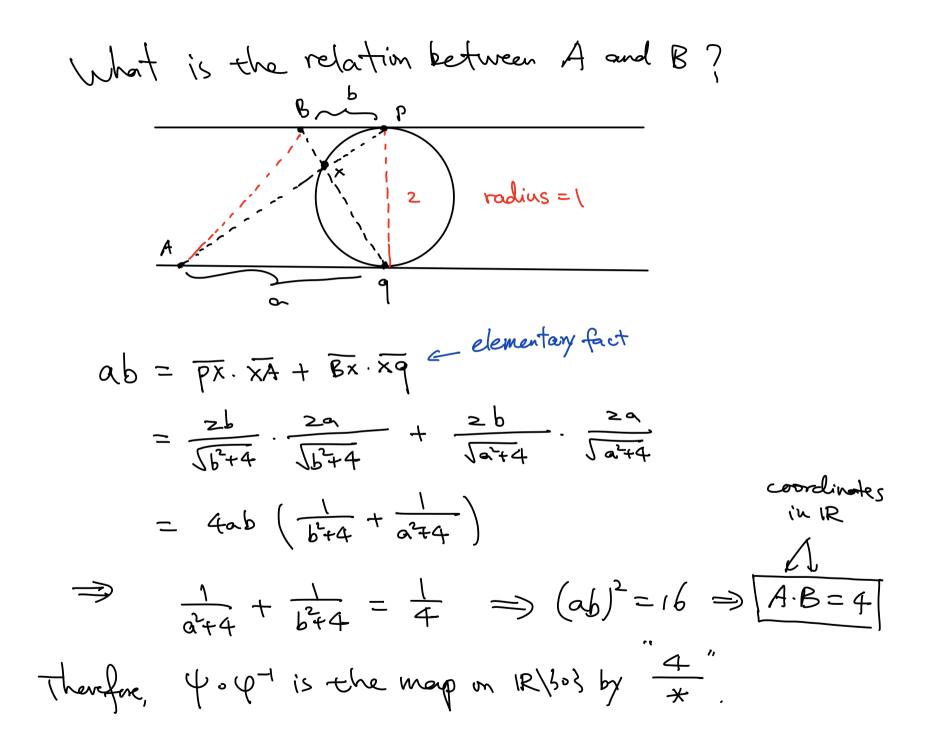
Extension

 \Rightarrow

	ter 35 concepts	computations	Herries				
EASY	- manifold and submfd - structure results of mfd	differentia (forms	de Rham cohomology -theory	\sim	algebraic geometry		
MIDDLE	- velations between Mfds; Vectur bundles (fiker)	integration and global results	Hudge theory (on harmonic form		PDE & complex geometry		
HARD	- dynamics: Lie derivatives connection	constructing examples	characteristic class theory	\sim	algebraic topology		
nemorize practice applications differential manifold is the foundation of many further							
developments in math. - platform - two is - theorems							

Style of lecturing
Undergraduate: concrete examples
$$\longrightarrow$$
 abstract definition
V Graduate : abstract definition \longrightarrow concrete examples
We will take this style.
Example (Undergraduate approach)
 $S' \neq \frac{R}{S' (4p)} \xrightarrow{P} R$
observe:
 $fixed pt P$
 $S' (4p) \xrightarrow{P} R$
 \Rightarrow every point $x \neq p$ has an
open neighborhood (= 5'(4p))
that looks like an open
subset of R .





$$= \int Def (f = manifold) \cdots$$

Example (Graduate approach)

Def A snorth mfd M is a second - countable Handroff

space s.t. \exists open cover $\{Uar_{det} = d \} M$ and a family

of maps $Ua: Ua \Rightarrow Va \in U^n$ (for some n) satisfying

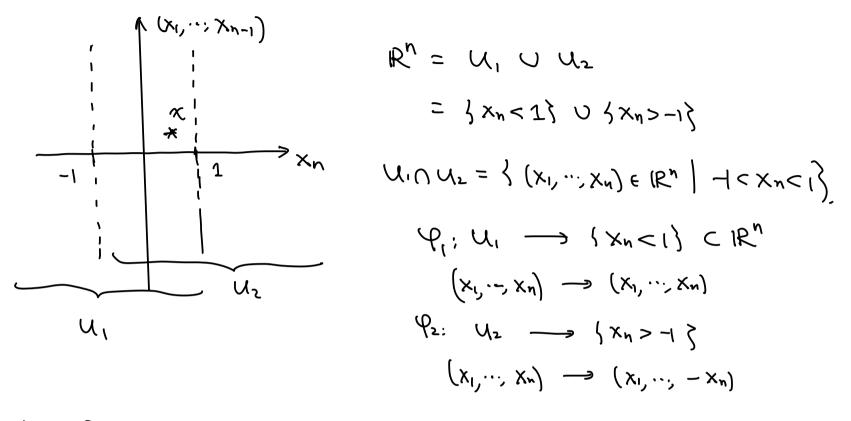
for any $a, \beta \in I$, the restriction

 $P_{\beta} \circ P_{a}^{-1}: Va \cap V_{\beta} \rightarrow Va \cap V_{\beta}$ (transition map)

is a smooth diffeomorphism (between open subsets in IK^n)

This "n" is called the dimension of M.

 $P_{\beta} \cdot P_{a}^{-1}$



Then for
$$X = (X_1, \cdot, X_{n-1}, X_n) \in U_1 \cap U_2$$
,

$$\begin{pmatrix} x_{1}, \dots, x_{n-1}, -x_{n} \end{pmatrix} \stackrel{\varphi_{2}}{=} \times \stackrel{\varphi_{1}}{\longrightarrow} \begin{pmatrix} x_{1}, \dots, x_{n-1}, x_{n} \end{pmatrix}$$

$$\begin{pmatrix} \varphi_{1} & (x_{1}, \dots, x_{n-1}, x_{n}) & \longrightarrow & (x_{1}, \dots, x_{n-1}, -x_{n}) \\ & & & \\ &$$

$$\frac{\operatorname{Rm} K}{\operatorname{regular}} - \operatorname{Oue} \operatorname{can} \operatorname{consider} F: \operatorname{M}^n \longrightarrow \operatorname{N}^n' \operatorname{uhere} \operatorname{M}, \operatorname{N} \operatorname{are}$$

$$\operatorname{manifolds}, \quad \text{then for regular value } z \in \operatorname{N} \operatorname{of} F, \quad \text{the preimage}$$

$$F^{-1}(z) \text{ is a manifold of dim = n-n'.}$$

$$- \operatorname{To} \operatorname{define} ''\operatorname{reguler} \operatorname{Value}', \quad \operatorname{one} \operatorname{needs} ''\operatorname{derivatives''}$$
and it is a new concept on smooth manifolds
$$\operatorname{To} \operatorname{simplify} \operatorname{the} \operatorname{Situation}: F: \operatorname{R}^n \longrightarrow \operatorname{IR} \text{ and } z \text{ is a}$$

$$\operatorname{regular} \operatorname{value} \operatorname{if} \operatorname{Hx} \in \operatorname{F}^{-1}(z), \quad \text{the derivative} \left(\frac{\operatorname{dF}}{\operatorname{dx}_{1}(x)}, \cdots, \frac{\operatorname{dF}}{\operatorname{dx}_{n}(x)}\right)$$

$$\operatorname{is a} \operatorname{mon-2ero} \operatorname{vector}.$$

e.g.
$$F: \mathbb{R}^n \longrightarrow \mathbb{R}$$
 an $\overset{*^o}{m}$ -homogeneous function;
 $F(tx_1, \dots, tx_n) = t^m F(x_1, \dots, x_n)$
Then $1(\in \mathbb{R})$ is a regular value of F .

To verify this, one apply Euler's formula for
$$x \in F^{-1}(i)$$
,

$$\frac{\partial F}{\partial X_{i}}(x) + \dots + \frac{\partial F}{\partial X_{n}}(x) = M \cdot F(x) = M \neq 0,$$

By prop,
$$5 \times E M \mid F(x) = 1$$
 (=: level -1 subset) is a manifold
of dim = n-1.

e.g.
$$M_{n\times n}(\mathbb{R}) = \{ n \text{ by } n \text{ matrix in } \mathbb{R} \} \cong \mathbb{R}^{n\times n}$$

top on $M_{n\times n}(\mathbb{R}) = \{ a_{11}, \dots, a_{nn} \}$
is induced by a top on $\mathbb{R}^{n\times n}$

F:
$$M_{WXM}(\mathbb{R}) \longrightarrow \mathbb{R}$$
 by $A \longmapsto \det(A)$
Then $1(\in \mathbb{R})$ is a regular value of F.
(3F. T)

To verify this, we need to show for any
$$A \in F^{-1}(I)$$
, $\left(\frac{\partial F}{\partial a_{II}}, -, \frac{\partial F}{\partial a_{II}}\right)(A) \neq 0$
 $\in \mathbb{R}^{n \times n}$

Then

$$\frac{d}{dt} \det (A + tA) \Big|_{t=0} = \frac{d}{dt} \det ((i+t)A) \Big|_{t=0}$$

$$= \det(A) \frac{d}{dt} (i+t)^n \Big|_{t=0}$$

$$= 1 \cdot \frac{d}{dt} (i+nt+\dots+t^n) \Big|_{t=0}$$

$$= n \neq 0$$
By prop, $A \in M_{nem}(R) \Big|_{t=0} \det(A) = i = :SL(n, R) \text{ is a manifold}$
of $\dim = n^2 - i$.

Summary (\$5 \$2) 1. 课程信息

2. 课程内容(挑)

×: 答疑 S 助赦: 何政卒 李进钊 Office hr: 周三下午 ≥:00 pm - 3:00 pm. 爆種輝: QQ 輝 576290693 単独联系: 邮件,

5