HOMEWORK FOR LECTURE 3

This homework problem set can be accomplished with the help of references. Every problem worths 1 point and DO NOT LEAVE ANY PROBLEM BLANK! It is due to 11:59 pm on November 5 (sharp).

Exercise 1. Let *V* be a vector space with basis $\{e_1, ..., e_n\}$. Then for a fixed $k \in \{1, ..., n\}$, prove that

$$
\{e_{i_1} \wedge \dots \wedge e_{i_k} \mid 1 \leq i_1 < \dots < i_k \leq n\}
$$

form a basis of $\bigwedge^k V$. Therefore, dim $\bigwedge^k V = \frac{n!}{k!(n-k)!}$.

Exercise 2. Let *V* be a vector space with basis $\{e_1, ..., e_n\}$, equipped with an inner product $\langle \cdot, \cdot \rangle$ with signature

$$
(\underbrace{-,\cdots,-}_{p},\underbrace{+,\cdots+}_{n-p}).
$$

Prove that for the Hodge star operator $* : \wedge^k V^* \to \wedge^{n-k} V^*$, it satisfies

$$
*\circ * = (-1)^{k(n-k)+p}\cdot 1\!\!1_{\bigwedge^k V^*}
$$

for any $k \in \{1, ..., n\}$.

Exercise 3. Let $\{\varphi_{s,t}\}_{(s,t)\in\mathbb{R}^2}$ be a 2-parametrized group of diffeomorphisms (on a manifold *M*). Consider two vector fields defined via the following equations,

$$
\frac{\partial \varphi_{s,t}}{\partial t} = X_s \circ \varphi_{s,t} \text{ and } \frac{\partial \varphi_{s,t}}{\partial s} = Y_t \circ \varphi_{s,t}.
$$

Then prove the following equality,

$$
\frac{\partial X_s}{\partial s} - \frac{\partial Y_t}{\partial t} = [X_s, Y_t]
$$

where $[\cdot, \cdot]$ denotes the Poisson bracket of vector fields.

Exercise 4. Prove that, for vector fields *X, Y* (on a manifold *M*), the Lie derivative satisfies $\mathcal{L}_X Y = [X, Y].$

Exercise 5. Recall that given a non-degenerate 2-form *ω* on *M*, any function *H* : *M* → R corresponds to a vector field X_H defined by $-dH = \omega(X_H, \cdot)$. For two functions $H, G: M \to \mathbb{R}$, define

$$
\{H, G\} := \omega(X_H, H_G).
$$

Then prove that if ω is closed, i.e., $d\omega = 0$, then $\{\cdot, \cdot\}$ satisfies the Jacobi identity:

$$
\{\{H, G\}, F\} + \{\{G, F\}, H\} + \{\{F, H\}, G\} = 0
$$

for any functions $H, G, F : M \to \mathbb{R}$.

Exercise 6. (GTM 218, Exercise 8-10) Consider manifold $\mathbb{R}^2_{>0}$ and $\varphi : \mathbb{R}^2_{>0} \to$ $\mathbb{R}^2_{>0}$ defined by

$$
F(x,y) = \left(xy, \frac{y}{x}\right).
$$

Compute the pushfoward $\varphi_* X$ for vector field $X = x \frac{\partial}{\partial x} + y \frac{\partial}{\partial y}$. Do the same thing for vector field $Y = y\frac{\partial}{\partial x}$.

Exercise 7. **(Partially based on GTM 218, Exercise 14-7 (a))** Consider 1-form $\alpha = x dy$ on \mathbb{R}^2 and map $\varphi : \mathbb{R}^2 \to \mathbb{R}^2$ defined by

$$
\varphi(x,y) = (xy, e^{-y}).
$$

Compute the pullback $\varphi^*\alpha$. Also, verify in this concrete case that $\varphi^*(d\alpha) = d(\varphi^*\alpha)$.

Exercise 8. **(Partially based on GTM 218, Exercise 9-17)** Let *X* be a smooth vector field on M^n such that $X(p) \neq 0$ at some point $p \in M$. (1) Prove that there exists a local chart $(U, \varphi : U \to V)$ near p, where V is an open subset of \mathbb{R}^n in coordinates $(x_1, ..., x_n)$, such that within *U*, we have $\varphi_*(X) = \frac{\partial}{\partial x_1}$. (2) Given the following three vector fields on \mathbb{R}^3 ,

$$
X_1=x\frac{\partial}{\partial y}-y\frac{\partial}{\partial x},\;\;X_2=y\frac{\partial}{\partial z}-z\frac{\partial}{\partial y},\;\;X_3=z\frac{\partial}{\partial x}-x\frac{\partial}{\partial z}.
$$

Near $p = (1, 0, 0)$, is it possible to find a local chart as above such that X_i maps to *∂* $\frac{\partial}{\partial x_i}$ for $i = 1, 2, 3$ at the same time? If so, construct such a local chart; if not, please give a justifying reason.

Exercise 9. Consider \mathbb{R}^3 equipped with the metric $g = dx \otimes dx + dy \otimes dy - dz \otimes dz$. A **Killing vector field** on (\mathbb{R}^3, g) is a complete non-trivial vector field X such that $\mathcal{L}_X g = 0$. In other words, by the definition of a Lie derivative, the flow generated by *X* preserves the metric *g*. (1) List as many *linearly independent* Killing vector fields in (\mathbb{R}^3, g) as possible. (2) Verify that if *X*, *Y* are two Killing vector fields in (\mathbb{R}^3, g) , then $[X, Y]$ is also a Killing vector field in (\mathbb{R}^3, g) .

Exercise 10. Let α be a 1-form on M^3 satisfying $\alpha \wedge d\alpha$ is a nowhere vanishing 3-form on *M*³ . (1) Prove that there exists a vector field (called a **Reeb vector field**) denoted by R_α such that $d\alpha(R_\alpha, -) = 0$ and $\alpha(R_\alpha) = 1$. (2) Confirm that $\mathcal{L}_{R_{\alpha}}\alpha = 0$. (3) In \mathbb{R}^3 in coordinates (x, y, z) , given an example of such α and work out the associated *Rα*.