HOMEWORK FOR LECTURE 3

This homework problem set can be accomplished with the help of references. Every problem worths 1 point and DO NOT LEAVE ANY PROBLEM BLANK! It is due to 11:59 pm on November 5 (sharp).

Exercise 1. Let V be a vector space with basis $\{e_1, ..., e_n\}$. Then for a fixed $k \in \{1, ..., n\}$, prove that

$$\{e_{i_1} \wedge \dots \wedge e_{i_k} \mid 1 \le i_1 < \dots < i_k \le n\}$$

form a basis of $\bigwedge^k V$. Therefore, dim $\bigwedge^k V = \frac{n!}{k!(n-k)!}$.

Exercise 2. Let V be a vector space with basis $\{e_1, ..., e_n\}$, equipped with an inner product $\langle \cdot, \cdot \rangle$ with signature

$$(\underbrace{-,\cdots,-}_{p},\underbrace{+,\cdots+}_{n-p}).$$

Prove that for the Hodge star operator $* : \bigwedge^k V^* \to \bigwedge^{n-k} V^*$, it satisfies

$$* \circ * = (-1)^{k(n-k)+p} \cdot \mathbb{1}_{\bigwedge^k V^*}$$

for any $k \in \{1, ..., n\}$.

Exercise 3. Let $\{\varphi_{s,t}\}_{(s,t)\in\mathbb{R}^2}$ be a 2-parametrized group of diffeomorphisms (on a manifold M). Consider two vector fields defined via the following equations,

$$\frac{\partial \varphi_{s,t}}{\partial t} = X_s \circ \varphi_{s,t} \quad \text{and} \quad \frac{\partial \varphi_{s,t}}{\partial s} = Y_t \circ \varphi_{s,t}$$

Then prove the following equality,

$$\frac{\partial X_s}{\partial s} - \frac{\partial Y_t}{\partial t} = [X_s, Y_t]$$

where $[\cdot, \cdot]$ denotes the Poisson bracket of vector fields.

Exercise 4. Prove that, for vector fields X, Y (on a manifold M), the Lie derivative satisfies $\mathcal{L}_X Y = [X, Y]$.

Exercise 5. Recall that given a non-degenerate 2-form ω on M, any function $H: M \to \mathbb{R}$ corresponds to a vector field X_H defined by $-dH = \omega(X_H, \cdot)$. For two functions $H, G: M \to \mathbb{R}$, define

$$\{H,G\} := \omega(X_H, H_G)$$

Then prove that if ω is closed, i.e., $d\omega = 0$, then $\{\cdot, \cdot\}$ satisfies the Jacobi identity:

$$\{\{H,G\},F\} + \{\{G,F\},H\} + \{\{F,H\},G\} = 0$$

for any functions $H, G, F : M \to \mathbb{R}$.

Exercise 6. (GTM 218, Exercise 8-10) Consider manifold $\mathbb{R}^2_{>0}$ and $\varphi : \mathbb{R}^2_{>0} \to \mathbb{R}^2_{>0}$ defined by

$$F(x,y) = \left(xy, \frac{y}{x}\right).$$

Compute the pushfoward $\varphi_* X$ for vector field $X = x \frac{\partial}{\partial x} + y \frac{\partial}{\partial y}$. Do the same thing for vector field $Y = y \frac{\partial}{\partial x}$.

Exercise 7. (Partially based on GTM 218, Exercise 14-7 (a)) Consider 1-form $\alpha = xdy$ on \mathbb{R}^2 and map $\varphi : \mathbb{R}^2 \to \mathbb{R}^2$ defined by

$$\varphi(x,y) = (xy, e^{-y}).$$

Compute the pullback $\varphi^* \alpha$. Also, verify in this concrete case that $\varphi^*(d\alpha) = d(\varphi^* \alpha)$.

Exercise 8. (Partially based on GTM 218, Exercise 9-17) Let X be a smooth vector field on M^n such that $X(p) \neq 0$ at some point $p \in M$. (1) Prove that there exists a local chart $(U, \varphi : U \to V)$ near p, where V is an open subset of \mathbb{R}^n in coordinates $(x_1, ..., x_n)$, such that within U, we have $\varphi_*(X) = \frac{\partial}{\partial x_1}$. (2) Given the following three vector fields on \mathbb{R}^3 ,

$$X_1 = x\frac{\partial}{\partial y} - y\frac{\partial}{\partial x}, \ X_2 = y\frac{\partial}{\partial z} - z\frac{\partial}{\partial y}, \ X_3 = z\frac{\partial}{\partial x} - x\frac{\partial}{\partial z}.$$

Near p = (1, 0, 0), is it possible to find a local chart as above such that X_i maps to $\frac{\partial}{\partial x_i}$ for i = 1, 2, 3 at the same time? If so, construct such a local chart; if not, please give a justifying reason.

Exercise 9. Consider \mathbb{R}^3 equipped with the metric $g = dx \otimes dx + dy \otimes dy - dz \otimes dz$. A Killing vector field on (\mathbb{R}^3, g) is a complete non-trivial vector field X such that $\mathcal{L}_X g = 0$. In other words, by the definition of a Lie derivative, the flow generated by X preserves the metric g. (1) List as many *linearly independent* Killing vector fields in (\mathbb{R}^3, g) as possible. (2) Verify that if X, Y are two Killing vector fields in (\mathbb{R}^3, g) , then [X, Y] is also a Killing vector field in (\mathbb{R}^3, g) .

Exercise 10. Let α be a 1-form on M^3 satisfying $\alpha \wedge d\alpha$ is a nowhere vanishing 3-form on M^3 . (1) Prove that there exists a vector field (called a **Reeb vector field**) denoted by R_{α} such that $d\alpha(R_{\alpha}, -) = 0$ and $\alpha(R_{\alpha}) = 1$. (2) Confirm that $\mathcal{L}_{R_{\alpha}}\alpha = 0$. (3) In \mathbb{R}^3 in coordinates (x, y, z), given an example of such α and work out the associated R_{α} .