## **HOMEWORK FOR LECTURE 2**

**This homework problem set can be accomplished with the help of references. Every problem worths 1 point and DO NOT LEAVE ANY PROBLEM BLANK! It is due to 11:59 pm on October 22 (sharp).**

**Exercise 1**. Given the Grassmannian  $\text{Gr}_{\mathbb{R}}(k, n)$ , consider the following set

$$
\gamma_{\mathbb{R}}(k,n) := \{ (V,v) \in \text{Gr}_{\mathbb{R}}(k,n) \times \mathbb{R}^n \mid v \in V \}.
$$

Prove that under the natural projection  $\pi(V, v) := V$ , the structure  $\pi : \gamma_{\mathbb{R}}(k, n) \to$  $Gr_{\mathbb{R}}(k, n)$  is a real vector bundle of rank-k. This vector bundle is called the tautological bundle (over  $\mathrm{Gr}_{\mathbb{R}}(k,n)$ ).

**Exercise 2**. Let *X, Y* be vector fields on *M*, and locally (within some  $(U_\alpha, \phi_\alpha)$ ) write  $X = (X_1, ..., X_n)$  and  $Y = (Y_1, ..., Y_n)$  where  $X_i, Y_j$  are smooth functions on  $U_{\alpha}$  for  $1 \leq i, j \leq n$ . Prove that the Lie bracket locally writes as follows,

$$
[X, Y] = (D_X Y_1 - D_Y X_1, \cdots, D_X Y_n - D_Y X_n).
$$

Use this to calculate  $[X, Y]$  for  $X, Y \in \Gamma(T\mathbb{R}^3)$  (in coordinate  $(x, y, z)$ ) where

 $X((x, y, z)) = (-y, x, 0)$  and  $Y((x, y, z)) = (0, -z, y)$ .

**Exercise 3.** (1) Let  $\mathbb{T}^2$  denote the 2-dimensional torus  $S^1 \times S^1$ . Construct a vector field  $X \in \Gamma(T\mathbb{T}^2)$  that does *not* have any zero's. (2) Construct a vector field  $X \in \Gamma(TS^2)$  that has only one zero.

**Exercise 4.** On the standard unit sphere  $S^3$  in  $\mathbb{R}^4$ , construct three smooth vector fields  $X, Y, Z \in \Gamma(TS^3)$  such that for every  $p \in S^3$ , the vectors  $\{X(p), Y(p), Z(p)\}$ forms a basis at the fiber  $T_p S^3 = \pi^{-1}(p)$  of the tangent bundle  $\pi : TS^3 \to S^3$ .

**Exercise 5**. Prove that for any finite-dimensional vector spaces *U, V, W*, there exists a map  $\varphi: U \otimes (V \otimes W) \to (U \otimes V) \otimes W$  that is an isomorphism and identifies  $u \otimes (v \otimes w)$  and  $(u \otimes v) \otimes w$ . (Hint: apply the universal property of tensor product.) **Exercise 6**. Recall that an element  $x \in V \otimes W$  is called *decomposable* if there exist *v* ∈ *V* and *w* ∈ *W* such that *x* = *v*⊗*w*. Suppose *V* admits a basis { $e_1, ..., e_n$ } and *W* admits a basis  $\{f_1, ..., f_m\}$ . Prove that  $x = \sum a_{ij} (e_i \otimes f_j) \in V \otimes W$  is decomposable if and only if the matrix  $(a_{ij})_{1 \leq i \leq n, 1 \leq j \leq m}$  has rank 1.

**Exercise 7**. For any matrices  $A \in GL(k, \mathbb{R})$  and  $B \in GL(l, \mathbb{R})$ , prove

 $\det (A \otimes B) = (\det (A))^k (\det (B))^l$ .

**Exercise 8**. Recall that on an even-dimensional manifold *M*, an *almost complex structure* denoted by *J* is a smooth family of morphism  $J_x: T_xM \to T_xM$  satisfying  $J_x^2 = -1$ . Consider the following (1, 2)-tensor field

$$
N_J(X, Y) := [X, Y] + J[JX, Y] + J[X, JY] - [JX, JY]
$$

for any  $X, Y \in \Gamma(TM)$ . A celebrated result from Newlander–Nirenberg says that *J* is integrable (induced by a complex structure) if and only if  $N_J \equiv 0$ . Prove that over a closed surface  $\Sigma$ , any almost complex *J* (if exists) is always integrable.

**Exercise 9**. Prove that on any Riemannian manifold (*M, g*), there exists a unique connection  $\nabla$  satisfying, for any *X, Y, Z*  $\in \Gamma(TM)$ ,

- (i) (compatibility)  $D_Z g(X, Y) = g(\nabla_Z X, Y) + g(X, \nabla_Z Y)$
- (ii) (torsion-free)  $[X, Y] = \nabla_X Y \nabla_Y X$ .

**Exercise 10**. Given a Riemannian manifold (*M, g*), prove that for any smooth function  $F: M \to \mathbb{R}$ , there exists a unique vector field denoted by  $\nabla F$  satisfying

$$
g(\nabla F, X) = D_X F
$$

for any  $X \in \Gamma(TM)$ . This vector field is called the *gradient of* F on M. Also, prove that function *F* is non-decreasing along  $\nabla F$ . Finally, work out (with details) the explicit formula of  $\nabla F$  for  $F : (\mathbb{R}^2, g) \to \mathbb{R}$  in polar coordinate  $(r, \theta)$ , where g is taken as the standard inner product.