HOMEWORK ONE

This homework problem set can be accomplished with the help of references. Every problem worths 2 point and DO NOT LEAVE ANY PROBLEM BLANK! It is due to 11:59 pm on October 30 (sharp).

Exercise 1. Let $\mathbb{D}^* = \{z \in \mathbb{C} \mid 0 < |z| < 1\}$, endowed with the standard symplectic structure $dx \wedge dy$ where $z = x + \sqrt{-1}y$. Give an explicit formula for a symplectomorphism $\varphi : \mathbb{D}^* \to \mathbb{D}^*$ that turns \mathbb{D}^* "inside out" in the sense that if $\{z_n\}_{n \in \mathbb{N}}$ is any sequence in \mathbb{D}^* approaching to $0 \in \mathbb{C}$, then $\lim_{n \to \infty} |\varphi(z_n)| = 1$. Please justify that your φ is indeed a symplectomorphism. (Hint: it will be easier to work with polar coordinate first.)

Exercise 2. Let (M, ω) be a symplectic manifold with an ω -compatible J and $(\Sigma, j, \operatorname{dvol}_{\Sigma})$ be a closed Riemannian surface with a fixed volume form $\operatorname{dvol}_{\Sigma}$. The energy of a smooth map $u : \Sigma \to M$ is defined as follows:

$$E(u) := \frac{1}{2} \int_{\Sigma} |\mathrm{d}u|_J^2 \,\mathrm{d}\mathrm{vol}_{\Sigma}$$

where $|\cdot|_J$ is the norm under the metric $\omega(\cdot, J\cdot)$. Prove that

$$E(u) = \int_{\Sigma} |\bar{\partial}_{J}(u)|_{J}^{2} \operatorname{dvol}_{\Sigma} + \int_{\Sigma} u^{*} \omega.$$

In particular, if u is J-holomorphic, then $E(u) = \int_{\Sigma} u^* \omega$.

Exercise 3. Let $(X, \xi = \ker \alpha)$ be a contact manifold with a fixed contact 1-form α . Consider the following functional on the loop space of X:

$$\gamma \in C^{\infty}(S^1, X) \mapsto \mathcal{A}_{\alpha}(\gamma) := \int_{\gamma} \alpha.$$

Complete the following question:

- (1) Calculate the critical points of \mathcal{A}_{α} and identify them with well-known objects in contact geometry.
- (2) Calculate the Hessian of \mathcal{A}_{α} and determine when a critical point is non-degenerate (in the Morse sense).

Exercise 4. For any almost complex manifold (M, J), prove the following two conclusions:

(1) There exists a *J*-compatible Riemannian metric g in the sense that for any $X, Y \in \Gamma(M, TM)$, we have g(JX, JY) = g(X, Y).

(2) Take the Levi-Civita connection ∇ of the metric g in (1) and consider the following affine connection on the tangent bundle

$$\widetilde{\nabla}Y := \nabla Y - \frac{1}{2}J(\nabla J)(Y).$$

Here, ∇J means the induced connection (still denoted by J) on the bundle $\operatorname{End}(TM) \to M$ acting on the section J. Prove that the induced connection from $\widetilde{\nabla}$ on $T^*M \otimes T^*M \to M$, still denoted by $\widetilde{\nabla}$ satisfies $\widetilde{\nabla} g = 0$.

Exercise 5. We will prove a simple version of the Arnold conjecture (on the number of fixed points of a Hamiltonian diffeomorphism) via the following three steps.

(1) Let $x(t): \mathbb{R}/\mathbb{Z} \to \mathbb{R}^{2n}$ be a smooth map with mean value zero. Then we have the following L^2 -estimate:

$$||x||_{L^2} \le \frac{1}{2\pi} ||\dot{x}||_{L^2}.$$

(Hint: use Fourier expansion.)

- (2) Use (1) to prove that given a compactly supported function $H: \mathbb{R}^{2n} \to \mathbb{R}$ as an autonomous Hamiltonian function on \mathbb{R}^{2n} with respect to the standard symplectic structure ω_{std} , if its Hessian is sufficiently small, then the only solutions of the 1-periodic orbit of the Hamiltonian flow of the corresponding Hamiltonian vector field X_H are the constant ones.
- (3) Use (2) prove that for any C^2 -small autonomous Hamiltonian function H and also Morse¹ on a symplectic manifold (M^{2n}, ω) , the Arnold conjecture holds:

$$\#\operatorname{Fix}(\phi_H^1) \ge \sum_{i=1}^{2n} b_i(M; \mathbb{Z}_2).$$

(You are free to use the Darboux theorem in symplectic geometry: locally any symplectic manifold can be identified with the standard Euclidean space.)

¹Strictly speaking, the original hypothesis for this version of the Arnold conjecture is that such Hamiltonian function is non-degenerate (in some sense, not explicitly elaborated in class). In fact, one can verify that, under the condition that all 1-periodic orbits of H are the constant ones, the non-degeneracy of this H is equivalent to H being Morse.